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Abstract 

Rampant test fraud in information technology certification testing programs has lead to the 

widespread unauthorized release of exam forms and perpetual item exposure. This paper presents 

evidence of how differential person functioning can be used in conjunction with differential item 

functioning to minimize the tangible and intangible costs and maximize the measurement 

integrity and validity associated with exam results that could be affected by test fraud. The 

methodology presented in this paper can identify suspect candidates based on their own aberrant 

response patterns, as well as control the influence of item degradation by assessing the extent of 

exposure for particular items. These results will help to: detect when security breaches have 

occurred, build more defensible cases to enforce sanctions against candidates, inform exam 

maintenance and item development, and provide insight into scale and item stability over time. 

The application of these dual analysis efforts will help to preserve the validity of candidate 

decisions and the reputation of testing programs operating in an environment of grossly exposed 

exam content. This paper also contributes to the growing literature on data forensic techniques to 

gauge the impact of test fraud on testing programs via statistical and psychometric methods. 
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Introduction 

Item exposure is a consistent threat to the validity of certification examinations due to prevalent 

piracy practices that include the regular theft and unauthorized release of individual items, entire 

item pools, and exam forms. It has been documented that item exposure is widespread within 

information technology (IT) certification exams in particular; live exam content and items are 

routinely being exposed on the Internet. The three basic outlets for legitimate and illegitimate 

advice and content are: exam preparation sites, Internet auction sites, and braindump sites that 

either formally sell stolen content or informally encourage candidates to share their own 

recollections about particular certification exams (Smith, 2004; Foster, 2013). According to 

research (Maynes, 2009), within some high-volume IT certification testing programs, a majority 

of candidates (i.e., 85% or more) may have acquired prior item knowledge by purchasing content 

through braindump sites.  

As a result of this problem, IT certification testing programs have been plagued by skepticism 

about the legitimacy of candidate exam results and resulting inferences about individuals’ 

knowledge, skills, and abilities. Therefore, this paper will focus specifically on addressing and 

diminishing the influence of test fraud, which is defined as “any behavior that inappropriately or 

illegally captures test questions and/or answers” (Foster, 2013, p. 47), as opposed to other 

cheating behaviors such as collusion or proxy test-taking. Test fraud is prominent in IT 

certification programs for a multitude of reasons, including, but not limited to: the high 

professional stakes linked to successful certification; advances in technology; the computer-

based, continual delivery of many of these exams; and the candidates’ familiarity and years of 

experience with technology (Wollack & Fremer, 2013; Smith, 2004). Given the prevalence of 

test fraud—particularly piracy—in IT certification testing programs, managing item exposure is 

a top priority regarding exam security.   

Test fraud can damage testing programs on several levels. Intangible costs are a loss of 

credibility and face validity with key stakeholders (including candidates themselves and 

employers). Tangible costs are associated with continual efforts geared at item protection and 

cheating detection, as well as item and test development. Item exposure as a security concern is 

rampant within certification examinations; it constitutes serious threats to the validity of score 

interpretation and use. As Impara and Foster (2006) highlight, cheating introduces construct-

irrelevant variance; scores may not accurately represent underlying content knowledge but 

instead “how a particular set of test questions has been answered or tasks performed through 

inappropriate means” (pp. 91-92).  Once items or entire examinations are exposed, candidates’ 

score integrity is compromised and the validity of the inferences being made based on the exam 

scores can be questioned (Wollack & Fremer, 2013).Consequently, it becomes difficult to 

discern if candidate performance is due to true ability or cheating through prior unauthorized 

access to exam content.  

Additionally, item degradation occurs as a result of exposure. Such exposure jeopardizes the 

quality, utility, and functioning of individual items as well as entire item banks. Item degradation 

is caused by the deterioration of desirable item characteristics over time, including, but not 

limited to: a reduction in content relevance and representativeness, loss of quality of technical 

characteristics (i.e., item difficulty and reliability), and a decrease in utility of the correlation 

between the item and construct of interest (Yang, Ferdous, & Chin, 2007). Maynes (2013) 

describes the residual effect of a large number of candidates having access to stolen content as a 
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“three-fold issue” (p. 180) that shifts classical item statistics, results in unexpectedly high levels 

of performance, and presents evidence of collusion through response pattern similarities. This 

item degradation threatens the statistical assumptions and psychometric models underlying these 

certification exams, as well as the individual testing outcomes for candidates.  The ability to 

detect and mitigate the negative effects of prior item exposure in an IT certification context 

where prevention of test theft is not realistic is therefore critically important in maintaining 

evidence of the validity of these testing programs.  

Item exposure negatively impacts item statistics. Han and Hambleton (2008) noted that 

proactive, systematic efforts should be made to identify exposed items, retire, and replace those 

items with less exposed (or ideally new items) before the impact on the item statistics is too 

drastic. While Han and Hambleton (2008) indicate that concerted security efforts should be put 

in place to initially protect from the test fraud and piracy, they recognize that continuous data 

forensics efforts are also necessary to assess the extent of compromised content. Therefore, it is 

important for testing programs with perpetually at-risk exam content to develop procedures 

around data forensics to quantify the degree of unauthorized released content, as well as policies 

around item exposure controls to gauge the extent of compromise in item banks and retire and 

refresh content as necessary (Impara & Foster, 2006).  

For the purposes of this paper, item exposure is defined as “the number or percent of people with 

pre-knowledge of the item before taking the test” as opposed to the more traditional “number of 

naturally occurring presentations of the questions” (Foster, 2013, p. 79). A solid research 

foundation has developed in recent years detailing how to detect and statistically control the 

standard item exposure that can be expected from the use of computer-adaptive testing 

algorithms and logic (Han & Hambleton, 2004; Lu & Hambleton, 2003; Han, 2003; Veerkamp & 

Glas, 2000). The authors of this research recommend that extensive item banks should be created 

to enable the regular replacement of items once over-exposure and compromise has been 

detected (Han & Hambleton, 2008; Foster, 2013). While the authors of this paper advocate for 

developing large item banks to address issues of item exposure, the focus will be more on 

identifying compromised items and replacing those with new items as necessary to allow for the 

continual administration of some unexposed content amongst largely exposed item pools instead 

of controlling the routine usage of particular items. Timeliness is of the essence to minimize the 

impact of item exposure and maximize measurement integrity in this testing environment; the 

extended use of exposed test items increases the extent of sharing and opportunity for prior 

knowledge of exam content (Carson, 2013). Test fraud can occur immediately following the 

initial release of exam forms, sometimes within days or even hours (Maynes, 2009; Smith, 

2004). Therefore, it has become of utmost importance that new items are continuously produced 

to support content refreshing and replacement. 

Testing programs have had to develop methods through which they can identify exposed items 

and aberrant response patterns within candidates to reduce the influence of test fraud on the 

validity of their testing programs. Several common practices are used within the IT testing 

community to detect irregular testing behavior, such as investigation into item response latencies 

(Maynes, 2013), comparisons of total exam performance by total exam time (Smith & Davis-

Becker, 2011) and score patterns on Trojan Horse items (Maynes, 2009). These practices help 

detect suspicious candidate behavior (i.e., candidates who answer items quickly but receive high 

scores and/or consistently answer correctly according to intentionally miskeyed items). However, 
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these techniques are limited in their enforceability. Candidates can adjust their response patterns 

to avoid detection. Additionally, these methods offer little assistance to identify specific 

compromised content despite giving some indication of the overall extent of exposure.  

Many testing programs have thus incorporated the application of statistical and psychometric 

methods on their exam data to detect cheating on examinations into their security analyses. Cizek 

(1999) supports the use of data forensics to detect cheating despite some limitations to the use of 

methods because “the conclusion that cheating has occurred is almost always probabilistic and 

requires inference” (p. 150). It is therefore common practice to rely on multiple sources of 

evidence and further investigation into statistical anomalies prior to taking action against any 

particular candidate or group of candidates. While there are still on-going discussions regarding 

the legitimacy of enforcement of sanctions against candidates based on the results of data 

forensics, Maynes (2013) has suggested that these actions can be considered defensible provided 

that the methods employed implement proper error control and rely on accurate data, credible 

measurements, consistent procedures, scientific methods, probability statements, and well-

reasoned findings. However, current data forensics range in their levels of effectiveness and 

sophistication; techniques have been proposed to detect unusual score gains, collusion among 

candidates, aberrant wrong and right answer patterns, suspicious erasures and answer changes, 

and test retake violations (Fremer & Ferrera, 2013).  

While research in the field of data forensics has emerged and developed in recent years, more 

advanced methodologies to assess the impact of test fraud and item exposure “are in their 

infancy and little is known about how well the few methods work in practice” (Wollack & 

Fremer, 2013, p. 8). In Cizek’s (1999) review of statistical methods to identify students copying 

from one another, he noted that initial attempts to apply the Rasch person-fit measures to identify 

suspect candidates based on misfitting response patterns yielded little valuable information. 

However, more recent work in the application of IRT models—particularly Rasch—to generate 

statistics indicative of cheating behavior other than collusion have proven more successful. For 

example, Maynes (2011) provided useful background on how IRT methods could be applied to 

compute score differences within a candidate’s test responses through precise probability 

statements within single exam instances.  

 

Item exposure calls into question the validity of candidates’ test scores; therefore, researchers 

argue that analyses must compare the performance of candidates on both exposed and unexposed 

test content (Carson, 2103; ATP, 2013; Maynes, 2009). For example, Maynes’ research (2011) 

purported the use of his score differential method to enable comparisons between new and old 

items, scored versus unscored items, and multiple choice and performance-based items to detect 

unusual score patterns within candidates that could indicate prior access to exam content. This 

paper presents further methodology to enhance these data forensics techniques in terms of 

identifying aberrant performance by candidates in testing programs within largely exposed item 

pools. Namely, this paper extends the existing research by Smith and Davis-Becker (2011) on 

how to detect candidates likely to have item pre-knowledge through the use of differential person 

functioning (DPF). It supports the utilization of DPF to identify candidates who likely gained 

prior access to exam content through illicit means by comparing performance on unscored pilot 

items along with scored items. It then furthers the approach by following the DPF with 

subsequent differential item functioning (DIF) analyses to detect compromised items due to 

exposure. While this research does not address the current dearth of research “that has 
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demonstrated the efficacy of DIF analysis for detecting group-based security breaches” (Maynes, 

2013, p. 192), it does present evidence of how DPF can be used in conjunction with DIF to 

highlight individual candidate incidences of item exposure and reduce the impact of test fraud on 

item banks.  

Data  

The data in this study were 8,350 administrations of a large-scale IT certification exam with 

substantial item-exposure issues. Candidates were randomly administered one of three pre-

equated, parallel forms, each consisting of 80 scored items. Additionally, candidates were 

randomly administered 20 unscored newly written pilot items that were proportionately 

representative of the content detailed in the exam blueprint. The item pool consisted of 641 total 

items, 227 scored and 414 unscored. Figure 1 shows candidates’ total scored item scores and 

their total test time; the high incidence of candidates with high exam scores in low time resulted 

in exposure concerns for the 227 scored items. Specifically, 95 candidates achieved a perfect 

score on the scored items (80 out of 80) in a median time of 23.2 minutes, which equates to 17.4 

seconds per item. Furthermore, 141 candidates were identified as having spent less than 5 

seconds on 20% or more of the items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Total Exam Time by Total Score 

Methods 

Differential Person Functioning (DPF) 

Differential person functioning (DPF) was initially conducted using Winsteps (Linacre, 2009) to 

identify candidates likely to have had prior knowledge of exam content by comparing 

candidates’ performance on scored and unscored items. DPF is a statistical analysis approach for 

comparing the performance of candidates on subsets of items while holding the item and person 

parameters constant, except for the person for whom DPF is being calculated. A candidate’s 

ability measures are estimated on each subset of items, along with a calculation of the log-odds 
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estimate of the difference between the two ability measures.  A probability is then calculated for 

each candidate that indicates the likelihood of a particular combination of scores based on the 

joint standard error between the measures.  

For this analysis, the item subsets for the DPF are the 80 scored, operational items and 20 

unscored, pilot items administered to each candidate. DPF is beneficial because the unscored 

items are randomly administered to candidates; the estimated probability and error is individually 

based on the specific items each respective candidate answered. This process enables flagging 

individual candidates with aberrant scores on the operational versus pilot items. Given the 

underlying assumptions of the Rasch model (i.e., sample independence), the precision of the 

ability estimates is not impacted by the comparative sample sizes of scored versus unscored 

items. However, practical decisions around the ratio of scored to unscored items administered to 

candidates and corresponding flagging criteria should be determined by the purpose of the exam, 

subsequent security analyses, and the testing program’s capacity for follow-up investigation and 

enforcement. 

This methodology is based on the notion that candidates with prior knowledge of the item pool 

would likely have a high estimated ability on the scored items and a low estimated ability on the 

unscored items; this results in a low estimated probability of these two measures resulting for the 

same candidate. This presupposes that only the operational, scored items have been exposed and 

that the unscored, pilot items have not yet been subject to test fraud. If this condition is met, this 

DPF analysis provides evidence for a validity argument for or against candidates’ exam scores 

by identifying candidates likely to have had prior content knowledge—intended or not. This 

assumption was confirmed for the purposes of this analysis, with the average Rasch item 

difficulty being easier for the scored items than the unscored items (average of -0.43 and 0.23 for 

scored and unscored items, respectively). 

The DPF analysis was conducted for all candidates on all 80 scored and 20 unscored items to 

detect candidates with an unexpectedly low probability of the combination of their two ability 

estimates. Candidates were flagged as possibly suspect if they had more than a 2 logit difference 

between their respective ability measures on the 80 scored items and 20 unscored items (DPF 

contrast greater than 2) and a probability of less than .01. These flagging criteria, which were 

more liberal than those suggested by Smith and Davis-Becker (2011), were considered 

appropriate for these analyses because the focus was identifying a cohort of candidates that likely 

had pre-knowledge of items for subsequent use as a subgroup in the DIF analyses—not 

necessarily providing probabilistic-based data to support enforcement cases against particular 

candidates. If detection and additional evidence for enforcing sanctions are primarily goals of 

security analyses, more conservative criteria would be suitable (e.g., the DPF contrast greater 

than 3 and probability less than .0001 utilized by Smith and Davis-Becker [2011]).
1
  

Differential Item Functioning (DIF) 

Differential item functioning (DIF) was subsequently conducted using Winsteps (Linacre, 2009) 

to assess the extent to which candidate prior knowledge of exam content impacted item 

                                                           
1
 Also see this research for practical guidance on decision consistency (as well as Type I and Type II error rates) 

which can be expected for a variety of unscored item sample sizes that could be useful to selecting flagging criteria. 
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performance by comparing item difficulty based on candidates’ DPF results. The DIF procedure 

implemented in Winsteps is based on the same theoretical properties as the Mantel-Haenszel 

method (Linacre & Wright, 1987). Of particular interest was the extent of item degradation that 

resulted from the unauthorized item exposure due to test fraud. Additionally, gathering 

information to drive exam maintenance—including identifying items in need of content 

refreshing or replacement as well as those appropriate to be utilized as anchor items—was a top 

priority.  

DIF is a statistical approach for comparing item difficulty across subgroups while controlling for 

candidate ability and item difficulty, except for the item for which DIF is being calculated. Item 

difficulties are calculated for each subgroup, along with a calculation of the log-odds estimate of 

the difference between the two difficulty measures. A probability is then calculated for each item 

that indicates the likelihood of a particular combination of difficulties based on the joint standard 

error between the difficulty measures.  

For this DIF analysis, the subgroups of candidates were those flagged through the DPF versus 

those without flags, or candidates with likely prior item exposure versus those with response 

patterns not indicative of having item pre-knowledge. The intent of the DIF is to determine the 

extent to which items have been exposed by comparing the item difficulty measures for flagged 

versus non-flagged candidates. The assumption of this paper is that non-exposed items would be 

of similar difficulty for both groups of candidates and that exposed items would favor flagged 

candidates. Again, given the underlying assumptions of sample invariance in the Rasch-based 

DIF model, the use of flagged candidates based on aberrant scores on scored versus unscored 

items should not affect model fit. The estimation of the parameters must be invariant across sub-

samples of candidates. In terms of establishing flagging criteria to identify compromised items, 

the overall size of the item pool, tolerance for retiring and replacing items, ability to refresh 

content with new, unscored items, and budget and resources for continued item development 

should be considered. 

This DIF analysis was conducted for all 641 total items (227 scored and 414 unscored) to support 

exam maintenance in the context of a grossly exposed item bank, including the determination of 

items that are fair to administer to all candidates, have been affected by exposure, are viable for 

inclusion in future iterations of the exam, and are appropriate for assignment to an anchor set. 

Items were flagged as exposed if they had more than a 2 logit difference between their respective 

difficulty measures for the flagged versus non-flagged candidates (DIF contrast greater than 2) 

and a probability of less than .05. These flagging criteria were considered appropriate for these 

analyses; the purpose of the DIF was to detect exposed items for retirement as well as well-

functioning items to serve as anchor items in preparation for an exam upgrade involving 

widespread content refreshing and item replacement. In circumstances with fewer resources to 

support wide-scale item development and form re-assembly, more conservative DIF contrast and 

probability flagging criteria would likely be better to reduce the pool of compromised items 

identified through the analyses. 
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Results 

Differential Person Functioning (DPF) 

Of 8,350 candidates, 531 candidates (6.4%) were flagged for DPF based on the established 

criteria. The critical probability to identify candidates with DPF was set to p<0.01, with a DPF 

contrast (absolute difference between the estimated Rasch ability measures) > 2.0. In this 

analysis, a positive DPF contrast suggests that the candidate scored significantly better on the 

scored items than the unscored items. The flagged candidates scored unexpectedly well on the 

scored items as compared to the unscored items (e.g., a score of 79/80 on the scored items and 

2/20 on the unscored items). For example, the likelihood of Candidate 508d having scored 100% 

(80 out of 80 possible points) on the scored items and only 60% (12 out of a possible 20 points) 

on the unscored items is 1 in 10,000. These candidates were therefore considered likely to have 

had item pre-knowledge and were suspected of accessing exam content prior to exam 

administration via test fraud. Figure 2 displays the contrasts in the DPF ability measures for each 

of the candidates. The highlighting displays those candidates with the most differential results by 

scored versus unscored Rasch measures.  

 

 
Figure 2. Differential Person Functioning by Scored v. Unscored Items 

Differential Item Functioning (DIF) 

Of 641 items, 138 items (20.2%) displayed significant DIF based on the set parameters. The 

critical probability to identify items with DIF was set to p<0.05 (higher than the p<0.01 DPF 

critical value) due to the lower stakes associated with identifying exposed items as opposed to 

suspect candidates that might be subjected to sanctions based on the results of the security 

analyses. The DIF contrast (i.e., absolute difference between the estimated Rasch item 

difficulties) was � 2.0. In these analyses, a positive DIF contrast suggests that the flagged 

candidates performed better on the item; a negative DIF contrast indicates that the non-flagged 

candidates scored higher on the item. See Table 1 for the breakdown of DIF results (positive or 

negative) by item status.  
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Table 1. DIF Results by Item Type 

Item Status 

Significant DIF 
No DIF 

Positive Negative 

Scored 57 1 169 

Unscored 0 80 334 

 

Figure 3 displays the DIF results by candidate flagging status. As seen in Figure 3, the DIF 

results showed 57 scored items that were statistically significantly easier for flagged candidates, 

such that flagged candidates performed better on these items than non-flagged candidates. These 

items were therefore considered to be the most grossly exposed and were marked for retirement 

and replacement. In contrast, 80 unscored items (and 1 scored item) displayed DIF in the 

opposite direction; these items were statistically significantly harder for flagged candidates. This 

was likely due to the secure nature of these items because they had not yet been subject to piracy. 

These unscored items were considered viable for inclusion as scored items on future iterations of 

the exam.  

  

 
Figure 3. Differential Item Functioning by Flagging Status 

In order to be able to equate the planned upgrade version of the exam to the current live version 

of the exam, the 169 scored items that did not display significant DIF (p>0.05, contrast<2.0) 

were considered viable for anchoring because prior knowledge of exam content was not shown 

to impact performance of those items. Fifteen of these items were selected to be retained as 

anchor items that were proportionately representative of the blueprint
2
 and well-fitting to the 

model. Table 2 shows the item statistics for the anchor items and highlights their range in both 

content distribution and item difficulty.    

  

                                                           
2
 The exam contains six sections, each respectively with 2 to 11 associated objectives, with content representation as 

follows: Section 1 (27.5%), Section 2 (20%), Section 3 (18.75%), Section 4 (15%), Section 5 (8.75%), and Section 6 

(10%).  
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Table 2. Anchor Item Statistics with DIF Results 

 

An item drift analysis on the anchor items was conducted by investigating displacement from 

their anchored item measures in Winsteps (Linacre, 2009) on the upgraded exam version with 

refreshed content and item replacements for those designated as exposed. These initial analyses 

indicate that the anchor set’s item difficulty estimates are stable within the new item bank. Table 

3 displays that the drift displacement in the respective Rasch item calibrations was all less than 

the 0.3 logit threshold noted by Wright and Stone (1979). Furthermore, the minimal amount of 

item difficulty drift displayed by the anchor items followed an expectantly balanced pattern, with 

six items drifting in a negative (easier) and nine items moving in a positive (harder) direction.  

Table 3. Anchor Item Statistics with Displacement  

  

DIF

DIF Measure DIF S.E. DIF Measure DIF S.E. Contrast Prob.

6 1 0.61 0.60 0.53 -0.21 0.28 0.64 0.04 -0.85 0.003

20 1 0.42 0.64 0.49 -0.14 0.27 0.42 0.04 -0.56 0.045

32 1 -0.33 0.77 0.33 -1.06 0.39 -0.33 0.05 -0.73 0.063

47 1 -0.27 0.76 0.33 -0.79 0.29 -0.27 0.05 -0.52 0.085

57 1 -1.43 0.90 0.27 -2.37 0.7 -1.43 0.07 -0.94 0.185

66 2 0.69 0.58 0.34 0.59 0.16 0.69 0.04 -0.1 0.560

79 2 -1.57 0.91 0.28 -1.95 0.59 -1.57 0.07 -0.38 0.520

102 2 -1.43 0.90 0.25 -3.04 0.89 -1.43 0.07 -1.62 0.073

130 3 -1.29 0.89 0.25 -1.06 0.39 -1.29 0.06 0.23 0.565

151 3 -0.18 0.74 0.53 -1.82 0.42 -0.14 0.05 -1.68 0.000

160 4 -0.16 0.74 0.44 -0.7 0.28 -0.16 0.05 -0.54 0.063

175 4 -0.4 0.78 0.52 -1.98 0.42 -0.36 0.05 -1.62 0.000

182 4 -0.35 0.77 0.39 -0.55 0.27 -0.35 0.05 -0.2 0.473

200 5 -1.2 0.88 0.31 -2.36 0.69 -1.2 0.06 -1.16 0.093

212 6 -1.51 0.91 0.31 -2.07 0.51 -1.51 0.07 -0.55 0.283

Flagged Candidate Non-Flagged CandidatesItem 

ID Section

Rasch 

Measure

P-

value

Item-Score 

Correlation

Item ID Section Number of Responses P-value Rasch Measure Displacement

6 1 404 0.59 0.61 0.08

20 1 411 0.62 0.42 0.13

32 1 388 0.73 -0.33 0.29

47 1 399 0.75 -0.27 0.14

57 1 424 0.92 -1.43 -0.3

66 2 414 0.58 0.69 0.02

79 2 397 0.91 -1.57 0.09

102 2 444 0.91 -1.43 -0.01

130 3 444 0.90 -1.29 -0.02

151 3 436 0.79 -0.18 -0.24

160 4 416 0.78 -0.16 -0.14

175 4 412 0.77 -0.4 0.13

182 4 401 0.79 -0.35 -0.06

200 5 418 0.87 -1.2 0.19

212 6 395 0.89 -1.51 0.24
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Conclusions 

The rampant test fraud in IT certification testing programs has lead to the widespread 

unauthorized exposure of exam forms and perpetual item exposure. As shown in this paper, the 

combination of DPF and DIF can strengthen the security monitoring of a testing program with 

known exposure issues. The tight timeframes for piracy (within days or weeks) within IT 

certification testing programs gravely reduce the benefit of investing the budget and resources 

into developing an entirely new item bank for exam with egregious exposure issues; that content 

would likely be stolen and exposed too quickly for the testing program to benefit from its efforts. 

Instead, realistic approaches to exam and item maintenance are needed to reduce threats to the 

validity of score interpretation and use in continually administered exams with exposure issues 

by highlighting specific compromised content.  

This paper presented how the use of DPF in conjunction with DIF can minimize the tangible and 

intangible costs of test fraud, in addition to maximizing the measurement integrity and validity 

associated with exams with this known security issue. Additionally, these procedures could deter 

future test fraud by enhancing the data forensics associated with a testing program. Wollack and 

Fremer (2013) note that well-articulated procedures are “a very effective way to communicate to 

candidates that cheaters leave behind irregular patterns of responses, and that even if they are 

sufficiently clever to successfully cheat on the exam, they will be unearthed by sophisticated 

statistical procedures being run in the background” (p. 11). It should be noted that these 

techniques rely on the hypothesis that only operational items have been exposed, and that 

unscored, pilot items have not been subject to test fraud. This assumption should be investigated 

and accepted by a given testing program prior to implementing these security analyses. 

With that caveat, the combined use of DPF and DIF enhances a test program’s ability to maintain 

credible exams within a context of prevalent test fraud by identifying suspect candidates based 

on their own aberrant response patterns and exposed items based on bias towards candidates with 

item pre-knowledge. Since DPF incorporates probabilistic-statements regarding discrepancies in 

individual candidates’ comparative scores within a single testing instance on a respected 

measurement model (Rasch), the results do align with Maynes’ (2013) requirements for 

enforceable security analyses and could lead to defensible sanctions against candidates when 

combined with other evidence. In these situations, candidates’ scores could be invalidated or 

candidates could be banned from testing for a set period of time, among a myriad other actions. 

Likewise, the DIF analysis as described presents probabilistic-statements about apparent bias in 

particular items towards those candidates with item pre-knowledge. Therefore, the extent of item 

degradation can be controlled by regularly checking the extent of exposure for particular items in 

compromised item banks. Once exposure is detected for particular items, these items can either 

be replaced immediately with new, unscored pilot items or be monitored for changes in their 

item statistics and replaced as necessary and feasible given the status of item development and 

availability of new items.  

The combination of these methodologies provides several practical options for testing programs 

trying to maintain the validity of their candidate decisions in the context of grossly exposed item 

banks. The comparison of scored to unscored items has been shown to be useful in identifying 

candidates likely of prior exam knowledge. However, specific decisions regarding the number of 

each of these item types to administer can be customized to the purpose of the exam, planned 

subsequent security analyses, and the testing program’s capacity for follow-up investigation and 
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enforcement. If detection and enforcement are primarily goals of the DPF analyses, conservative 

flagging criteria can be utilized to identify candidates with the vastest discrepancies in their 

scores on the compromised and non-compromised content. With regard to detecting exposed 

items, the overall size of the item pool, tolerance for retiring and replacing items, ability to 

refresh content with new, unscored items, and budget and resources for continued item 

development should be considered. For example, testing programs should take into account the 

following questions, among others: How many items are in the item pool, and what percent of 

those are exposed? To what extent has item degradation impacted item statistics and candidate 

results? Do sufficient unexposed items exist to retire and replace compromised items, or is new 

content necessary? What is the timeline of new item development, including review? Will the 

production and maintenance schedule allow for the piloting new items? In circumstances with 

fewer resources to support wide-scale item development and form re-assembly, more 

conservative flagging criteria should be selected for the DIF analyses to reduce the pool of 

compromised items identified through the analyses. 

Research still needs to be conducted to confirm these results and explore extensions of these 

methods, such as scale stability over time. This paper presents how these methods can be used to 

(1) detect when security breaches have occurred; (2) determine the extent of item exposure; (3) 

build cases against suspect candidates; (4) collaborate with other evidence to support the 

enforcement of sanctions against candidates; (5) highlight specific items with compromised 

content, and (6) evaluate appropriate next steps for particular items and entire item banks while 

discussing the relevant psychometric and policy issues for each of these areas. The application of 

these dual analysis efforts will help to preserve the validity of candidate decisions and the 

reputation of testing programs operating in an environment of grossly exposed exam content. 

This paper also contributes to the growing literature on data forensic techniques to gauge the 

impact of test fraud on testing programs via statistical and psychometric methods. 
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