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Abstract 

This paper investigates alternative test theory models for use in analyzing item and task model 

data exemplifying item families, clusters, parcels, bundles, or testlets. The paper summarizes 

theory and analysis models for generalizing the item difficulty, discrimination, and model misfit 

parameters (or subsets) and test statistics from score computations based on individual items to 

groups or sets of items. The study uses an empirical dataset that exemplifies the concepts of item 

families, item bundles, item parcels, or testlets that may include conditional item/task 

dependence. The empirical data set is analyzed with multiple test models for computing item and 

test score statistics. The data set is analyzed first with individual test items and second with a 

meaningful item family structure. Results from the analyses are presented with item analysis 

statistics, item parameter estimates, standard errors, model fit indices, test characteristic curves, 

and test information curves. 

Introduction 

Scientific and technical advances occur when we pose fundamental investigative problems, 

decide relevant theories that might be helpful in solving the key problems, implement 

appropriate design environments and measurement processes and then critically evaluate the 

results to validate or revise our theories and problems. One fundamental problem in both 

computerized adaptive testing and statewide educational assessment is the need for creating large 

banks of well validated test items/tasks that can be produced in a very cost effective manner. A 

second fundamental problem in educational measurement is effective and efficient test assembly. 

Relevant educational measurement theories that might useful in addressing these two 

fundamental problems include: automated test assembly, optimal test design, item generation, 

item cloning, assessment engineering and item and task modeling and analysis.  

The paper presents a theoretical and practical approach for using item and task modeling and 

analysis. We propose that item and task modeling and analysis will move the educational 

measurement profession forward in a very significant and meaningful way. This paper provides 

background theory, testing applications and analysis approaches for generalizing the classical or 

IRT item difficulty, discrimination, and model misfit parameters (or subsets) by using concepts 

of item families, clusters, parcels, bundles or testlets. The estimated item difficulties, 

discriminations, and model misfit parameters and associated parameter standard errors could 

apply to any child/sibling item or task selected from the item/task model. Test scores are 

accumulated scores or IRT proficiency estimates over a series of test items or performance tasks. 

Item and test statistics and parameters can be computed and reported at multiple levels of 
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aggregation. The paper presents alternative theoretical and practical perspectives on the problem 

and potential solutions 

 

Theoretical Background for Item and Task Modeling and Analysis Approaches 

 
Item Parcels and Factored Homogeneous Item Dimensions 

 

One of the first references to item families in the statistical literature is in the work of Raymond 

B. Cattell, a pioneering factor analyst of personality data. Raymond Cattell (1965, 1973, 1978; 

Burdsal & Vaughn, 1974) argued against factor analyzing individual personality items and 

argued for the use of homogeneous groups of personality items that he called item parcels. The 

item parcels were factor analyzed as groups of items rather than analyzing each of the individual 

items contributing to each parcel. As input to the factor analysis Comrey (1988) also argued for 

the use of sets of items, which he defined as Factored Homogeneous Item Dimensions (FHIDs; 

Comrey, 1967, 1984). These analysts believed that the item group score would provide a more 

stable aggregate score and more theoretically meaningful scoring unit than the individual 

personality item.  

 

Item Forms, Item Shells and Domain Referenced Testing 
 

Wells Hively‟s (1974) seminal book on domain referenced testing proposed the need for a better 

understanding of the behavioral foundations of educational accomplishment and a clear theory 

and technology to make it operational. Domain referenced testing requires a careful analysis of 

the universe or domain to be tested and an analysis of the expert‟s and learner‟s capabilities 

within the domain. In constructing a pool of items for the domain the item writers develop an 

extensive item bank that represents the fundamental characteristics of the universe or domain of 

knowledge to be tested. 

 

 When a learner answers a representative set of test items from the domain then the resulting 

sample score should allow for generalization to the universe or domain field. The goal of domain 

referenced testing was to make each concrete tested domain more representative of the total 

universe of skills within the domain. Domain referenced testing introduced the formalized 

concepts of item forms and item shells (Hively, 1974, p. 11). The item form or shell is the list of 

rules for generating or selecting a set of related items from the domain. When the content domain 

is clearly specified with domains and sub-domains, the testing procedure consisted of drawing 

representative samples of items from the domain and sub-domains and scoring examinee 

performance on those samples. With domain-referenced testing reliability is the accuracy with 

which estimates of probabilities of correct performance are made within the concrete domain and 

its sub-domains. Validity was the generalization from the probabilities of correct performance on 

the concrete domains to the larger universe of knowledge from which the concrete domain was 

specified.  

 

With domain-referenced testing the theoretical and empirical focus is not on the specific test item 

but on the probabilities of successful performance of the learner within sub-domains for 

diagnostic formative assessment purposes and the learner probability of successful performance 

in the concrete domain for summative assessment purposes. The probability of successful 
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performance in the specified and sampled concrete domain was generalized as an expected 

estimate of the performance of the learner on the universe of items or tasks that could have been 

administered rather than on the specific samples that were administered. Domain-referenced 

testing provides another measurement theory link for exploring item and task modeling and 

analysis for item groups and families. 

  

Item Bundles 

 

Rosenbaum's (1988) entitled his article in Psychometrika “item bundles.” He notes, “An item 
bundle is a small group of multiple choice items that share a common reading passage or graph, 

or a small group of matching items that share distractors. Item bundles are easily identified by 

paging through a copy of a test. Bundled items may violate the latent conditional independence 

assumption of unidimensional item response theory (IRT), but such a violation would not 

typically suggest the existence of a new fundamental human ability to read one specific reading 

passage or interpret one specific graph. It is important, therefore, to have theoretical concepts 

and empirical checks that distinguish between, one the one hand, anticipated violations of latent 

conditional independence within item bundles, and on the other hand, violations that cannot be 

attributed to idiosyncratic features of test format and instead suggest departures from 

unidimensionality (Rosenbaum, 1988, p. 349).”   

 

Rosenbaum used the Mantel-Haenszel statistic to identify conditional independence among 780 

possible pairs of multiple choice items in the 40-item population biology subscore of the College 

Board‟s 1982 Advanced Placement Examination in Biology. He identified 17 [of the 40] items 

that displayed at least one significant negative partial association with another item at the            

p < .001 level. The balance of 23 items showed no negative partial associations among items. His 

analysis identified two item bundles (items 82 through 85 and items 86 through 88) as separate 

groups of items that shared common distractors which asked students to link biological terms and 

their definitions. There were also four other items (13, 14, 49, and 51) which showed significant 

negative partial associations (p < .001) but there were no obvious links among these four items 

except for relative exam position effect. Rosenbaum posed three questions for consideration. 

  

“(i). Is there any reasonable sense in which exam responses might be described as 

unidimensional despite some excessive dependence between small groups of items that 

share material? 

(ii). If such a notion of unidimensionality exits, what does it imply about observable item 

response distributions? In other words can we test this broader class of unidimensional 

models? 

(iii). In particular, how would we interpret the negative partial association between Items 

13 and 14? These items do not share materials. Is it possible that this negative partial 

association is an indirect consequence of the link between Item 13 and the item bundle 

including Item 88 [the item bundle that includes items 86 to 88]? Or does the negative 

partial association between two items not in the same bundle indicate a violation of 

unidimensionality in the wider sense?”  
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Rosenbaum distinguishes between violations of test item unidimensionality and violations of 

latent conditional independence. When item bundles share common materials such as a reading 

passage or science diagram, there is a plausible rationale for conditional item dependence.  

However, some items may show statistical dependence without sharing any common materials. 

He notes, “There are many types of items which seem difficult when first attempted, but which 

seem to become somewhat easier with practice on similar items. Certainly one can construct 

mathematical word problems or verbal analogies that are so parallel in nature that the sharing of 

cognitive tasks is almost undeniable (Rosenbaum 1988, p. 358-359)”.  

 

For the perspective of this paper the key theoretical notion introduced by Rosenbaum is that 

items can form “item bundles” and that psychometric approaches can be used to evaluate 

characteristics of the “item bundle” and relationships to other “item bundles” or to individual test 
items.  

„ 
Item Families, Item Clones and Computerized Adaptive Testing  

 

Glas & van der Linden (2001, 2003) indicate that one major impediment to implementation of 

computerized adaptive testing (CAT) is the resources needed for item pool development to 

provide both content item structures and item parameter estimates that are needed for effective 

and efficient computerized adaptive testing. One of the solutions to this problem is item cloning 

to generate the required adaptive testing pools. Glas & van der Linden (2001, 2003) suggest two 

procedures that have been used for generating item clones. One procedure employs a syntactic 

description of test items with one or more open slots for which replacement option sets may be 

selected by computer algorithm (Millman and Westman, 1989). The second procedure is to 

modify parent items and generate cloned sibling items from the parent item by transformation 

rules. Glas & van der Linden, 2003 note, “examples of such rules are linguistic rules that 

transform one verbal item into others, geometric rules that present objects from a different angle 

in spatial ability tests, chemical rules that derive molecular structure from a given structure in 

tests of organic chemistry, or rules from propositional logic that transform items in analytic 

reasoning tests into a set of new items.” (Glas & van der Linden, 2003, p. 247).  

 

Glas & van der Linden note that pioneers in the concepts of item cloning included Bormuth 

(1970), Hively, Patterson and Page (1968), and Osburn (1968). “Common to their approaches is 
a formal description of a set of „parent items‟ along with algorithms to derive families of clones 

from them. These parents are known as „item forms,‟ „item templates,‟ or „item shells‟. 
Glas & van der Linden, 2003, p. 247).”  

 

Glas & van der Linden introduce the notions of creating item pools with families of items 

generated from parents p = 1,…….P. Items within family p will be labeled ip = 1,…..Ip. They use 

a two stage procedure for adaptive item selection where a family of items is selected that is 

optimal at the current person proficiency estimate and then an item is randomly sampled from 

the item family and administered. Items within families are modeled by a three-parameter 

logistic (3PL) model and the parameters of items within families are modeled by a (joint) 

distribution that addresses variability within families (Glas & van der Linden, 2003, p. 248). 
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Their simulation results indicated the value of modeling the family structures of cloned items 

with the multi-level IRT model with family specified parameter distributions. “It is a statistical 

fact that ignoring the family structure of the items in the pool is a case of model misspecification, 

which generally leads to bias in parameter estimation and hence to an increase in the mean 

absolute estimation error. In the simulation studies, the multilevel IRT model did suffer from this 

type of bias, but the effects were very small….If all variability in the pool is within the families, 
the procedure is domain-referenced testing, whereas if all variability is between families, it is 

CAT from a pool of individually calibrated items (Glas & van der Linden, p. 260).” 

  

Item Families and Family Response Functions 

 

Sinharay, Johnson & Williamson (2003) and Johnson and Sinharay (2005) recommend the 

investigation of item families/family response functions. Sinharay, Johnson & Williamson 

(2003) introduced the Family Expected Response Function (FERF) as a way to summarize  

probabilities of a correct response to an item randomly drawn from an item family. The 

calibration of item families allows for generation of items on the fly from the family structure. 

Examinees can also be scored on their performances with new, unscaled items drawn from the 

defined family structure. Bejar, Lawless, Morley, Wagner, Bennett & Revuelta (2002) also 

discuss the use of an expected response function for linear-on-the-fly adaptive testing. 

 

Johnson & Sinharay (2005) and Williamson, Johnson, Sinharay, & Bejar (2002) suggest the 

three approaches for modeling data involving item families using IRT models for either 

dichotomous or polytomous items: the unrelated siblings model, the identical sibling model, and 

the related sibling model each of which are briefly summarized below.  

 

Unrelated Siblings Model.  

 

The unrelated siblings model (USM) assumes that the items are mutually independent and each 

item in the pool or model is calibrated.  

 

Identical Siblings Model. 

 

The identical siblings model (ISM) assumes that the item parameters are the same for all items 

within the same family. Depending on the degree of variation between sibling items the model 

provides biased or over confident estimates of examinee scores. 

 

Related Siblings Model. 

 

The related siblings model (RSM) uses a hierarchical model with a separate item response 

function per item at the lower level and a higher level model that relates the item parameters for 

each family. Johnson & Sinharary (2005) recommend use of the related siblings model (RSM) to 

calibrate item families and also address the variability of sibling items within families. The paper 

graphically compares eleven estimated family response and score functions.  
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Cluster-and Item Bundling Models 

 

Ellen Boekkooi-Timminga (1990) suggested the use of a cluster-based method for test 

construction where items within the bank were grouped together based on item information 

functions and the group clustered items with similar information functions were considered 

equivalent.  

 

Wilson & Adams (1995) recommend the use of Rasch models for item bundles where the 

clusters or bundles of test items are identified by “common stimulus materials, common item 

stems, common item structures, or common item content, such that one might be led to doubt 

that the usual assumption of conditional independence between items would be an appropriate 

one to make (Wilson & Adams, 1995, p. 181).”  
 

Testlet Models 

 

In 1987, Wainer and Keily defined a testlet as the aggregation of a packet of test items that are 

administered together (as a mini test). Testlets provide a way of addressing problems of cross-

information from one item to another, unbalanced contexts by controlling presentations of test 

items that are congruent with test specifications, and providing common item order effects. 

Testlets can be used for modeling and analysis of item groups that share a common reading 

passage, a common graphic picture or chart, item groups that do not exhibit conditional 

independence or other types of departures from standard unidimensional IRT models and 

assumptions. Testlets provide one method for analyzing and modeling data from item clusters or 

item families.  

   

Wainer, Bradlow and Wang‟s book on Testlet Response Theory and its Applications (2007) 

provides multiple measurement models among others for testlet data involving two parameter 

logistic (2PL), three parameter logistic (3PL) and Bayesian testlet models for analyzing mixtures 

of dichotomous and polytomous results. The testlet contribution for each of these models is 

accounted for by using an additional testlet parameter in the standard IRT model parameter 

estimation. In a 2PL model that is used for analyzing testlet data, an additional third testlet 

adjustment parameter is estimated in the calibration or scoring process. Likewise, if a 3PL model 

is used for analyzing testlet data, an additional fourth testlet adjustment parameter is estimated in 

the calibration or scoring process. Testlet Response Theory provides an alternate approach to 

assessing item families, clusters, bundles or testlets.  

 

Assessment Engineering 

  

Richard Luecht (2009, 2007, 2006a, 2006b, Luecht, Gierl, Tan & Huff, 2006), has recommended 

the assessment engineering approach to constructing tests. The assessment engineering approach 

uses task models and templates to generate structured classes of comparable test items. The items 

developed with the task models or templates inherit the estimated psychometric characteristics 

from the task model or templates from which they were selected.  
 

Luecht, Burke & Devore‟s (2009) initial validation of assessment engineering employs task models 

that define different regions of the construct-referenced domain measurement scales. The defined 

task models are positioned along the measurement scale by the joint combination of complexity and 
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difficulty indices. Each task model has multiple templates and each of the associated templates can 

be used to generate multiple tasks or items. They note, “This provides enormous efficiencies to treat 

either the task model as a family of templates or a template as a family of items, and lends itself 

nicely to a hierarchical IRT calibration system (e.g., Glas and van der Linden, 2003)  (Luecht, Burke, 

& Devore, 2009, pp. 4-5).” 

 

Assessment engineering provides an additional linked concept for the analysis of item families, 

clusters and bundles.  

 

Automated Item Generation 

 
Sandene, et. al., (2005) investigated the use of automated item generation approaches for the NAEP 

Online Assessment in Mathematics. They note, “Automatic item generation rests on two premises. 

The first premise is that a class of test items can be described in enough detail for a computer to 

generate instances of that class. The second is that enough can be known about the determinants 

of item difficulty so that each of the generated instances does not have to be individually 

calibrated. The description the computer uses to generate instances of a class is called an item 

„model‟ and the instances are called „variants.‟ ” 

 

The solution to the first premise of automated item generation has been documented in Irvine 

and Kyllonen‟s (2002) book. They demonstrated over a wide range of content that item classes 

can be sufficiently defined that computers can generate variant or isomorph items. Using 

automated item generation ETS has used the Mathematics Test Creation Assistant (Singley & 

Bennett, 2002) for research concerning limited item generation in selected large scale testing 

programs. The second premise of automated item generation concerns the appropriateness of the 

calibration of the item model (item family) and verification that the item model parameterization 

structure can be imputed to the variants (isomorphs or sibling) so that calibration of the variants 

is not required.  
 

Sandene, et. al., (2005) suggest two approaches for generating comparable item sets. “The calibration 

can be accomplished by basing the model on an empirically calibrated item and then constraining 

the model so that it, ideally, produces variants that diverge little in substance and psychometric 

properties from the original “parent” question. Variants that preserve the underlying problem 

structure are termed “isomorphs.” Because the variants created by a model are not only 

isomorphs of one another, but also isomorphs of the parent item, the model‟s parameters may, in 
theory, be imputed from those of the parent. A second calibration method is to pretest a sample 

of variants from the item model and use that information to establish model parameters 

(Sandene, et. al., 2005, p 24).” 

 

An empirical investigation of item generation and item family calibration was conducted using 

the ETS Mathematics Test Creation Assistant for a research project with the NAEP Mathematics 

Assessment. Item models and isomorphs were created for 15 of 26 items in the Eighth grade 

paper and pencil forms. Test development specialists reviewed isomorphs that were generated 

and removed any items that might disadvantage one or more demographic groups. The 

isomorphs were then randomly selected to be included on Form A, Form B or on Form P&P. The 

isomorphs were in the same test serial position on all forms. Automatically generated items were 

also present in each of the test sections and alternate forms.  
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The three alternate forms were administered to samples of eighth grade students, 954 students 

received form P&P, 926 students received Form A, and 906 students received Form B. Scaling 

for the three test forms was conducted using a 20-item anchor test. Within each test form the 

item parameterization was not constrained. This allowed for comparisons of the item parameters 

for the 11 items that were common to the three test forms and the 14 sets of isomorphs. Due to 

scaling problems one isomorph set of items was not analyzed.  
 

Separate plots were analyzed of the pairwise comparisons of the IRT b parameters for the 11 

identical items on the three grade 8 paper forms and the pairwise comparisons of the IRT b 

parameters for the 14 isomorphs on the three grade 8 paper forms. The pairwise comparison of 

parameters for the identical items were fairly well clustered around the diagonal slope but some 

identical items showed departures from the expected diagonal slope. The plot of the isomorphs 

showed more variation from the diagonal but many of the isomorphs were still very close to the 

expected diagonal slope. Mean differences in parameter estimates and mean absolute differences 

in parameter estimates were computed between the parameter estimates for the identical items 

and the isomorphs. Pearson correlations between the parameter estimates for the identical items 

were 0.97, 1.00 and 0.97 for the three pairwise test form results and .80, .85 and .98 for the three 

isomorph pairwise test form results. As expected the isomorph calibrations were less congruent 

than the calibrations of the identical items. In their executive summary, Sandene, et. al., (2005) 

state, “The degree to which the item-parameter estimates from one automatically generated item could be 

used for related automatically generated items was also investigated. Results suggested that, while the 

item-parameter estimates varied more than would be expected from chance alone, this added variation 

would have no statistically significant impact on NAEP scale scores (Sandene, et. al., 2005, p. viii).”  

Automated item generation also provides a contributing thread toward the analysis of item 

families or groups.  

 

In summary, the literature review has shown a variety of related approaches have been used to 

explore the potential benefit or value for item task modeling with groups of items rather than 

with individual test items or tasks.  

 

METHODS 

 

The paper presents a theoretical and practical approach for using item and task modeling and 

analysis. We propose that item and task modeling and analysis will move the educational 

measurement profession forward in a very significant and meaningful way. This paper provides 

background theory, testing applications and analysis approaches for generalizing the classical or 

IRT item difficulty, discrimination, and model misfit parameters (or subsets) by using the 

concepts of item families, clusters, parcels, bundles or testlets. Test scores are accumulated 

scores or IRT proficiency estimates over a series of test items or performance tasks. Item and test 

statistics and parameters can be computed and reported at multiple levels of aggregation. The 

estimated item difficulties, discriminations, and model misfit parameters and associated 

parameter standard errors could apply to any child/sibling item or task appropriately and 

systematically selected from the item/task model. The paper presents alternative theoretical and 

practical perspectives on the problem and potential solutions.  
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Test Data 

 

The data employed for the modeling and analysis is from an information technology 

credentialing and certification test for designing computer databases. The credentialing and 

certification test included two alternate forms A and B with fifty items each. The test includes a 

total of nine scenarios case clusters coded as Cases A(11), B(11), C(10), D(12), E( 9), F(10), 

G(14), H(5) and I(7). The parenthesis after the case indicates the total number of items from the 

item bank included in that scenario case. The nine case scenario groups include between 5 and 

14 items from the item pool. The case clusters are based on a database scenario that forms the 

measurement context for the items. Six of the scenario cases are administered within each test 

form. The scenario case structure for each of the two test forms and the numbers of items per 

case are presented below.  

 

Cases and (Items) Per Test Form 

Form A:  B(6), C(10), E(7), F(10), G(12), and H(5) 

Form B:  A(11), B(11), D(11), E(4), G(5), and I(7) 

 

The parenthesis after the case indicates the total number of items from the item bank included in 

that scenario case on each test form. Form A was administered to 630 individuals and Form B 

was administered to 640 individuals.   

 

There were eleven (11) anchor items within each form. These eleven anchor items were drawn 

from three of the scenario cases. The anchor items included six (6) items from Case B, two (2) 

items from Case E and three (3) items from Case G. The anchor items were administered to a 

total of 1270 individuals.  

 

The anchor items had a p value range from 0.74 to 0.94 (mean 0.87, St. Dev. 0.078), point 

biserial correlations for the anchor items ranged from 0.40 to 0.62 (Mean 0.50, St. Dev. 0.069), 

and Rasch measures for the anchor items ranged from -1.38 to +1.01 (Mean -0.39, St. Dev. 

0.902). Infit and outfit Rasch statistics for the anchor items were less than 1.17 Infit Mean 

Square Max and 1.35 Outfit Mean Square Max.   

  

ANALYSIS 

 

The test data set was analyzed and modeled using classical test theory, Rasch, Master‟s partial 
credit and confirmatory factor analysis. Results are provided from the analysis of the items as 

individual items and the analysis of the items within the scenario case clusters. The analysis for 

classical test theory was conducted using standard analysis techniques implemented in Excel 

spreadsheets. The item response theory modeling was conducted using Winsteps for the Rasch 

and Master‟s partial credit analyses. Two parameter item calibrations and confirmatory factor 

analysis were conducted using MPlus.  
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RESULTS 

 

Results for the classical item and test analysis are presented first. The Master‟s partial credit 

Rasch measurement results are provided and the final analyses presented are for the confirmatory 

factor analysis.  

 

As shown in Table 1 the mean scores for the two forms A and B were 43.31 and 40.71 

respectively showing that form A was relatively easier than form B. The median scores for the 

two forms were 47.0 and 43.0 points again showing form A was meaningfully easier than Form 

B, assuming random group equivalence. Figure 1 shows the reverse cumulative distribution 

(passing rates at each possible score value) for the two forms. Figure 1 shows that Form A is 

slightly easier than Form B for the upper portion of the score distribution. Figure 2 and 3 show 

the test characteristic curves and the test information curves for the two test forms. These results 

show that form A is relatively easier and provides more information than form B particularly in 

the center of the ability distribution. Form A provides less information at the top end of the 

distribution. The standard deviations of the scores for Form A and B were 8.40 and 8.68 

respectively and the standard errors of the mean for Form A and B were 0.33 and 0.34 points. 

The Cronbach‟s alpha reliabilities for Form A and B were 0.939 and 0.928 respectively. The 

standard error of measurement on the two forms A and B was 2.07 and 2.33 points respectively. 

With the exception of the mean scores and passing rates the classical test theory statistics for the 

two test forms and items comprising the forms are comparable. The two test forms show very 

acceptable internal consistency as measured by Cronbach‟s alpha reliability.  

 

Table 1. Test Form Statistical Information 

Statistic Form A Form  B 

Examinee Count 631 639 

Exam Length 50 50 

Mean 43.31 40.71 

SD 8.40 8.68 

Median 47.0 43.0 

Mode 49 49 

Avg. Time on Test 45.8 51.6 

SD of Time on Test 33.4 32.9 

Standard Error of the Mean 0.33 0.34 

95% confidence interval +/- 0.66 0.67 

Minimum 0 0 

Maximum 50 50 

Alpha Reliability 0.939 0.928 

SEM 2.07 2.33 

95% confidence interval +/- 4.06 4.57 
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Figure 1. Pass Rates for the alternative test forms 

 

 
 

 

Figure 2. Test Characteristic Curves 
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Figure 3. Form Test Information Functions 

 

 
 

 

Classical Item Analysis and Rasch Measures at the Item Level 

 

Table 2 in Appendix A presents classical item analysis results and Rasch Measures at the item 

level for all eighty-nine items within Form A and Form B. Table 2 includes an item sequence 

number, the case classification, the item ID, Rasch statistics include the Rasch Measure, Infit 

Mean Square, Outfit Mean Square, classical item analysis results are given for the p-values, 

point biserials (item-score correlations), and item reliability which is a function of the p values 

and the point biserial correlations, the number of examinee responses, and the average number of 

seconds for the candidate response. Items are flagged in red when the item is too easy or too 

difficult as indicated by the p value statistic and not correlating with the total score as indicated 

by the low or negative point biserial correlations. The test and item analysis typically includes 

answer option analysis, the Rasch item file, the Rasch person item map, and the Rasch person 

file.  

 

Analysis of Test Items by Scenario Case using Master’s partial credit analysis 

 

The items within each scenario group were analyzed with Master‟s partial credit Rasch analysis 

at the group level. These results are presented in Table 3. Table 3 presents the minimum, 

maximum and mean and standard deviations for the p values, the point biserial correlations, and 

the Rasch item level measures. The table also shows the Master‟s partial credit Rasch analysis 
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Group measure and the point measure correlations for the case clusters. Cases highlighted in 
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level using the Master‟s partial credit analysis. This analysis indicates that for the cases C, E, F 

and H the Rasch analysis at the individual item level and the Rasch analysis at the case group 

level resulted in similar mean Rasch Measures. However, each of these cases has wide variance 

in the minimum and maximum Rasch values at the item level but have comparable mean scores 

when the item level Rasch mean is compared to the Item Group Rasch mean measure from the 

partial credit analysis.  

 

Table  3. Item Analysis, Rasch Measurement and Item Group Measurement for Cases 

 
 PValue Pt. Biserial Rasch Measure Item Group Rasch 

CASE Min Max Mean(SD) Min Max Mean(SD) Min Max Mean(SD) Measure Pt 
Meas 

A(11) .78 .92 .86 (.04) .43 .63 .50 (.06) -0.94 0.11 -0.20 (0.47) -0.66 0.85 

B(11) .50 .93 .81(.14) .32 .57 .42 (.07) -1.09 2.25 -0.60 (0.09)  0.10 0.17 

C(10) .74 .88 .83 (.05) .44 .67 .57 (.07) -0.23 0.92 0.37 (0.47) 0.37 0.76 

D(12) .74 .94 .84 (.07) .36 .64 .51 (.08) -1.43 0.84 -0.11 (0.77) -0.55 0.86 

E(9) .34 .94 .77 (.19) .05 .62 .45 (.16) -1.06 3.15 0.50 (1.34) 0.59 0.70 

F(10) .76 .92 .87 (.06) .27 .62 .48 (.10) -0.84 1.00 -0.18 (0.68) 0.04 0.79 

G(14) .74 .95 .87 (.12) .33 .61 .45 (.09) -1.42 2.16 -0.36 (1.01) 0.40 0.63 

H (5) .79 .87 .83 (.03) .47 .58 .54 (.05) -0.01 0.79 0.39 (0.30) 0.24 0.69 

I (7) .71 .92 .88 (.63) .44 .66 .56 (.07) -0.99 1.05 -0.10 (0.63) -0.53 0.82 

 

 

Table 4 provides the Master‟s partial credit Rasch item file for the Group measurement of the 

cases with statistics for the case identification (number of items per total case), entry into the 

analysis (the entry numbers have been reordered to correspond to the alphabetical listing of the 

cases), Rasch partial credit measure, count of examinees, score for all of the examinees per case, 

standard error, the Infit Mean Square, Infit Mean Standardized Infit Z statistic, the Outfit Mean 

Square and the Standardized Outfit Z statistic, the point measure correlation, and the estimated 

item discrimination for the case cluster. Figures 4-12 (one for each case group A-I respectively) 

provide scenario case item response curves with both estimated and empirical data 

representations. In Figures 4 to 12 the periods and x‟s represent the estimated item response 

function and the solid line gives the modeled empirical item response functions.  The item 

response functions also show 95% confidence intervals for the expected response functions.  

 

The case response functions that show acceptable fit between the empirical and modeled item 

response functions for six cases include Case A (Figure 4), Case D (Figure 7), Case E (Figure 8), 

Case F (Figure 9), Case G (Figure 10), and Case I (Figure 12). The case response functions that 

show non-acceptable fit between the empirical and estimated item response functions for three 

cases include Case B (Figure 5), Case C (Figure 6), and Case H (Figure 11).  
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Figure 3a shows the Test Characteristic Curves for the alternate forms as measured with the 

Master‟s Partial Credit Analysis. This analysis shows that Form A is slightly easier than Form B 

in the middle to upper of the ability scale.  

 

Figure 3a Test Characteristic Curves for Master’s Partial Credit Analysis 

 
 

 

Figure 3b shows the Test Information Function Analysis for the alternate forms as measured with 

the Master‟s Partial Credit Analysis. The Test Information Functions shows that Test Form A is 

more informative than Test Form B at the center of the test score scale.  
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Figure 3b Test Information Functions for Master’s Partial Credit Analysis 

 

 
 

Figure 4. Empirical vs. Model ICC for Case A 
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Figure 5. Empirical vs. Model ICC for Case B 

 

 
 

Figure 6. Empirical vs. Model ICC for Case C 
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Figure 7. Empirical vs. Model ICC for Case D 

 

 
 

 

 

Figure 8. Empirical vs. Model ICC for Case E 
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Figure 9. Empirical vs. Model ICC for Case F 

 

 
 

 

Figure 10. Empirical vs. Model ICC for Case G 
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Figure 11. Empirical vs. Model ICC for Case H 

 

 
 

 

Figure 12. Empirical vs. Model ICC for Case I 
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Table 4 shows that the Case Cluster Rasch measures range between a low theta value of -0.66 to 

a high theta value of 0.59. Table 5 shows the minimum and maximum Rasch measures of the 

individual test items within each case group. For comparison the Rasch Measures for the 

individual items range from a low theta value of -1.43 to a high theta value of +3.15.  

 

The Infit and Outfit Mean Squares for Case B show large values indicating that that Case B was 

not well fit with the partial credit analysis. The significant negative standardized z tests for the 

infit and outfit statistics may be due to the small number of cluster items which are being 

measured (nine in total). Table 4 also shows strong point measure correlations for all cases 

except for Case B which also showed significant Mean Squares and standardized z tests for the 

Infit and Outfit statistics. Case B has a point measure correlation of only 0.17. The other cases 

have point measure correlations ranging from a low of 0.63 for Case F to a high of 0.86 for Case 

D. Table 4 also shows a zero estimated item discrimination value for Case B. All other Cases had 

estimated item discrimination indices greater than 1.00 with a range from 1.07 for Case G to a 

high of 1.38 for Case E. The Rasch estimated item discrimination index greater than 1.00 

indicates that these Cases have a steeper item response slope (discrimination) than expected. 

    

 

 

 

 

 

 

 

Table 4. Partial Credit Rasch Item File for Scenario Cases 

 

CASE ENTRY MEASURE COUNT SCORE ERROR IN.MSQ IN.ZSTD OUT.MSQ OUT.ZSTD PTME DISCRIM 

A(11) 4 -0.66 639 6013 0.03 0.66 -5.56 0.59 -6.19 0.85 1.20 

B(11) 1 0.10 1270 9013 0.02 2.53 9.90 2.76 9.90 0.17 -0.07 

C(10) 3 0.37 631 5217 0.02 0.47 -9.37 0.40 -8.92 0.76 1.23 

D(12) 5 -0.55 639 6434 0.03 0.58 -7.34 0.56 -7.40 0.86 1.29 

E(9) 6 0.59 1270 5350 0.02 0.55 -9.90 0.58 -9.90 0.70 1.38 

F(10) 8 0.04 631 5505 0.03 0.64 -5.53 0.55 -6.67 0.79 1.20 

G(14) 2 0.40 1270 9424 0.01 0.83 -4.57 0.99 -0.19 0.63 1.07 

H(5) 9 0.24 631 2613 0.04 0.66 -5.45 0.54 -6.73 0.69 1.19 

I(7) 7 -0.53 639 3771 0.04 0.59 -6.49 0.52 -6.78 0.82 1.20 

 

Table 5. Minimum and Maximum Individual item Rasch Measures by Case 

  

Case A B C D E F G H I 

Min -0.94 -1.15 -0.23 -1.43 -1.13 -0.84 -1.42 -0.01 -0.99 

Max +0.52 +2.25 +1.14 +0.84 +3.15 +1.00 +2.16 +0.79 +1.05 

 

The summary Rasch measurement table for the cases indicated that the minimum partial credit 

exam score was 8 points and the maximum partial credit score was 50 points. The mean case 
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based test score was 42.3 indicating a skewed distribution to the top end of the measurement 

scale. The standard errors were 0.19 to 0.39 for the test scores. The person to raw score to 

measure correlation was 0.90 for the analysis. The Rasch measure for the nine cases ranged from 

-0.66 as a minimum to +0.59 as a maximum with a mean theta score of 0.0 and a standard 

deviation of 0.44. The standard errors for all of the modeled cases were 0.01 to 0.04. The root 

mean squared errors were 0.03 for the Cases and 0.29 to 0.31 for the measured Persons 

indicating fairly accurate measurement for persons and cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confirmatory Factor Analysis and Dimensionality  

Principal Components Analysis. 

Dimensionality of the test was investigated with principal components analysis using SPSS and 

confirmatory factor analysis using MPlus. Principal components analysis was conducted for each 

test form shown in Table 6. The scree plots and a comparison of eigenvalues (λ) indicated that a 

maximum of three principal components could be extracted for each test form.  

Table 6. Summary of Principal Components Eigenvalues and Ratios 

 Scree 

Plot 

λ 1 

(cumvar) 

λ 2 

(cumvar) 

λ 3 

(cumvar) 

Ratio 

λ 1 to λ 2 

Ratio 

λ 2 to λ 3 

Ratio 

Remaining λ 

Form 

A 

3 13.07 

(26.16%) 

2.943 

(32.04%) 

1.694  

(35.43%) 

4.4 1.74 1.30 

Form 

B 

3 12.38 

(24.75%) 

2.96 

(29.87%) 

2.40 

(34.66%) 

4.2 1.3 1.6 

 

The interpretation of the components for Form A showed that the third principal component was 

primarily measuring items from Case G since five of the seven of the significant component 

loadings were from that case. The second component for Form A had twelve of 50 items with 

significant loadings and three strongly positive loadings, one from Case B (0.443), one from 

Case F (.587) and one from Case G (0.457). The second component was addressing some 
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elements of several of the cases but not across all cases or consistently strong across all cases. 

For Form A the first extracted component had significant loadings for each of the 50 items.  

For Form B, the third component had seven of 50 component significant loadings  and four of 

these seven were from Case D and two component loadings that were moderately negative (i.e., 

component adjustment values). The second component appears to be addressing primarily Case 

B and two loadings from Case G. For Form B the first extracted component had significant 

loadings for each of the 50 items.  

 

For both Form A and Form B the results from the eigenvalue analysis, percent variance 

extracted, the scree plot and the substantive interpretation suggest that there is a single 

component factor that is influencing the full measurement scale.   

 

Confirmatory Factor Analysis  

A confirmatory factor analysis approach was conducted with the case clustered items using 

MPlus. The confirmatory factor analysis approach was conducted separately by form since each 

test form had a different mix of cases and number of items per case. The test form data matrices 

were analyzed with and without the case structure being specified. The hypothesis tested is that a 

single latent measurement dimension is underlying the scores within each test form. Without a 

case structure being identified a two-parameter IRT normal ogive model with a single latent 

dimension model was estimated with weighted least squares with mean and variance corrections. 

The IRT normal ogive model provides model estimates (loadings) for the one latent factor 

model, thresholds, item discrimination indices, item difficulties, and RSquared values. MPlus 

also provides category proportion values for dichotomous variables which are equivalent to the 

classical test theory p values. Standard errors were computed for each of the statistical estimates. 

The parameterization for the normal ogive model employs a two parameter probit metric where 

the probit value is equal to discrimination * (theta-difficulty).  

 

With a structured model being specified the confirmatory factor analysis modeling available in 

MPlus tests the bi-factor hypothesis that there is a single latent dimension underlying all of the 

variables within the modeled dataset and separate orthogonal and independent latent dimensions 

accounting for additional variance beyond the base model specified in the two parameter normal 

ogive model. Essentially, with the case based items from Form A and Form B the analysis 

models the single latent dimension or factor and provides measurement model estimates 

equivalent to factor dimension loadings and standard errors on the primary latent dimension. The 

analysis is a confirmatory factor analysis to determine if there exist orthogonal, independent 

latent dimensions that account for supplemental variance for the first case and all remaining 

variables, for the second case and all remaining variables, etc. to the sixth case group within each 

form. In standard multi-trait-multi-method terminology, the cases in the analysis can be 

considered as alternative measurement methods. The bi-factor confirmatory factor analysis 

sequentially tests the existence of subsequent orthogonal dimensions that account for measurable 

variance after the primary latent dimension has been modeled and the second latent dimension 

accounting for the first case and its interactions with the remaining variables. Additional latent 

orthogonal dimensions are confirmed if they are present for each of the six case groups within 

the test form. The analysis confirms if there is a primary latent dimension in the data, and if there 

is a latent dimension that accounts for variance with the first case and all remaining unanalyzed 

variables, then the second case and remaining unanalyzed variables (cases 2 to 6), then with case 
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3 and the remaining unanalyzed variables (cases 3 to 6). This procedure continues until the last 

latent dimension is confirmed with the variables related only to the last case group. 

 

A third confirmatory factor analysis evaluated the presence of a one factor logistic regression 

model with a two parameter logistic metric using the parameterization where the logit is 

1.7*Discrimination*(Theta-Difficulty). The one factor logistic regression model provides model 

estimates, thresholds, item discriminations, item difficulties, and RSquared values. Standard 

errors are provided for each statistic estimated.  

 

Multiple tests of model fit were completed for the confirmatory factor analyses, a chi square test, 

a comparative fit indicator, the Tucker-Lewis indicator, the root mean squared error of 

approximation (RMSEA) and the weighted root mean square residual (WRMR). As shown in 

Table 7, each indicator showed very acceptable model fit for both the one factor IRT normal 

ogive model and the bi-factor model. Each of the analyses was estimated with weighted least 

squares estimation with mean and variance corrections.  

 

 

 

 

 

 

 

 

 

Table 7. Model Fit Tests for Confirmatory Factor Analysis 

 

Tests of Model Fit One Factor 

Normal Ogive 

WLSMV 

FormA 

Bi-Factor 

WLSMV 

 

Form A 

One Factor 

Normal Ogive 

WLSMV 

Form B 

Bi-Factor 

WLSMV 

 

Form B 
Chi-Square Test 1409.469 1409.47 2007.319 610.685 

Df 30 30 46 30 

Probability Value 0.00 0.00 0.00 0.00 

Comparative Fit Indicator 0.840 0.862 0.751 0.788 

Tucker-Lewis Indicator 0.968 0.972 0.941 0.95 

Root Mean Square Error of 

Approximation (RSMEA) 

0.049 0.045 0.063 0.058 

Weighted Root Mean 

Square Residual (WRMR)  

1.18 1.087 1.421 1.303 

 

Table 7 shows that for each of the test forms A and B the bi-factor model with the case 

clusterings was a better fit than the single factor IRT normal ogive model. Essentially this means 

that there is meaningful measurable variance in the case structure methods dimensions that is not 

accounted for by the single latent dimension underlying the test items within each form.  

 

Comparing One Factor Weighted Least Squares Model with the Bi-Factor Models 
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This section compares the loadings for the one factor normal ogive model and the bi-factor 

loadings for the general loading and the specific cluster or case loading estimates for Forms A 

(Table 8 to 10) and B (Table 11-13) respectively. The one factor estimated loadings are the 

factor loadings for each item if there is confirmed only a single latent dimension underlying the 

examinee performance on the set of items in Form A. The bi-factor general loading is the 

estimated factor loading on the underlying latent dimension that is measured by all of the items 

with the structured model. The bi-factor cluster loading is the estimated factor loading on the bi-

factor that confirms if there is any supplemental variance contributed by the items in each case 

and the interactions with the remaining variables in the model. The orthogonal structural factors 

are sequentially addressed with the remaining items in that case or subsequent cases up to the 

final latent dimension for the items in the last case. Colors have been added to facilitate 

comparisons of the cluster loadings for each of the six cases per test form.  

Loadings greater or less than 0.200 were classified as significant in Table 8 and 9 for Form A. 
The significant negative loading are interpreted as the examinee having a greater probability of a lower 

score with the presence of the item embedded in the case structure than if the case structure was not 

present. The same interpretation should be given for all of the negative loadings in the following analyses.  

 

 

 

Table 8. Form A Comparing One Factor and Bi-Factor with Item Clustering    

One Factor 

Model  

BiFactor 

Model 

 BiFactor 

Model 

 

Form A 

One Factor  

Estimated 

Loadings 

Standard 

Errors 

General 

Loading 

 Cluster 

Loading 

 

Item Variable CASE Estimate SE 
Estimate SE Estimate SE 

V11ABA B 0.712 0.050 0.703 0.051 0.455 0.107 

V12ABB B 0.821 0.030 0.836 0.030 -0.361 0.112 

V51ABK B 0.705 0.066 0.699 0.067 0.345 0.098 

V51ABL B 0.776 0.045 0.776 0.046 0.196 0.101 

V52ABM B 0.550 0.045 0.551 0.045 0.128 0.092 

V53ABN B 0.594 0.059 0.582 0.060 0.540 0.107 

V12AEB C 0.751 0.035 0.747 0.034 0.142 0.076 

V13AEC C 0.698 0.037 0.719 0.036 -0.277 0.110 

V21AEA C 0.800 0.030 0.798 0.029 0.099 0.073 

V31AEE C 0.601 0.053 0.603 0.053 0.032 0.098 

V32AEG C 0.788 0.029 0.770 0.031 0.396 0.078 

V33AEH C 0.727 0.041 0.724 0.042 0.121 0.086 

V33AEI C 0.769 0.038 0.754 0.039 0.330 0.080 

V34AEK C 0.679 0.048 0.682 0.048 0.027 0.098 
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V51AEL C 0.797 0.031 0.782 0.032 0.316 0.071 

V52AEO C 0.843 0.024 0.836 0.025 0.191 0.068 

V21AIA E 0.682 0.049 0.681 0.049 0.234 0.107 

V23AID E 0.715 0.040 0.715 0.041 0.232 0.095 

V24AIE E 0.725 0.058 0.729 0.058 0.019 0.112 

V26AIH E 0.497 0.051 0.513 0.050 -0.470 0.149 

V41AII E 0.699 0.036 0.698 0.037 0.263 0.093 

V43AIK E 0.678 0.060 0.686 0.060 -0.159 0.122 

V44AIL E 0.796 0.028 0.796 0.029 0.268 0.087 

V22AJA F 0.571 0.059 0.533 0.064 0.630 0.097 

V23AJB F 0.616 0.044 0.586 0.047 0.585 0.085 

V24AJD F 0.719 0.033 0.703 0.035 0.400 0.075 

V25AJE F 0.735 0.043 0.747 0.043 -0.199 0.091 

V26AJF F 0.698 0.048 0.700 0.049 0.034 0.081 

V26AJG F 0.789 0.029 0.800 0.029 -0.138 0.072 

V41AJH F 0.776 0.038 0.770 0.040 0.224 0.075 

V42AJI F 0.424 0.094 0.427 0.094 -0.023 0.078 

V43AJJ F 0.720 0.048 0.713 0.050 0.235 0.079 

V44AJL F 0.678 0.057 0.677 0.058 0.117 0.080 

V11ADA G 0.650 0.068 0.633 0.070 0.300 0.110 

V12ADB G 0.678 0.068 0.639 0.072 0.530 0.095 

V31ADD G 0.578 0.062 0.556 0.063 0.371 0.090 

V31ADE G 0.611 0.058 0.587 0.059 0.387 0.090 

V32ADF G 0.709 0.051 0.680 0.055 0.456 0.086 

V33ADG G 0.510 0.050 0.512 0.051 0.039 0.100 

V34ADI G 0.794 0.039 0.796 0.040 0.049 0.100 

V34ADJ G 0.512 0.066 0.501 0.066 0.222 0.097 

V51ADL G 0.831 0.032 0.839 0.032 -0.044 0.102 

V52ADM G 0.767 0.035 0.771 0.035 0.013 0.098 

V53ADN G 0.803 0.051 0.791 0.052 0.255 0.093 

V53ADO G 0.703 0.073 0.666 0.077 0.499 0.085 

V23AFD H 0.649 0.049 0.655 0.049 -0.051 0.097 

V25AFF H 0.657 0.042 0.671 0.042 -0.301 0.117 

V41AFI H 0.783 0.031 0.773 0.033 0.468 0.100 

V44AFL H 0.729 0.034 0.724 0.035 0.243 0.077 

V44AFM H 0.775 0.033 0.765 0.035 0.366 0.087 

    

AVERAGE 0.697 0.046 0.692 0.047 0.175 0.093 

STD DEV 0.095 0.014 0.097 0.015 0.252 0.015 

MIN 0.424 0.024 0.427 0.025 -0.470 0.068 

MAX 0.843 0.094 0.839 0.094 0.630 0.149 
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MEDIAN 0.711 0.045 0.703 0.047 0.223 0.093 

ITEMS 50     

OBSERVATIONS 630     

 

Summary information is provided at the bottom of Table 8 for the average, standard deviation, 

minimum, maximum, median and the number of items and total observations for Form A. This 

summary information shows that the average loadings for the one factor model are 0.697 with a 

standard deviation of 0.095 while the average of the loadings for the bi-factor model are slightly 

less at 0.692 with a standard deviation of 0.097. The average of the loadings for the clustered 

items within cases is 0.175 with a standard deviation of 0.252. The high and low clustered 

loadings are -.470 and .630 with a median cluster loading of 0.223. Average standard errors for 

the one factor model are 0.046 and for the bi-factor underlying factor 0.047 and for the clustered 

loadings 0.093. There are 50 items and 630 observations for Form A.  

Table 9 shows that there are significant positive cluster loadings and a few negative cluster 

loadings across the cases. This indicates that the confirmatory factor analysis was able to identify 

independent and orthogonal variables and variance that are contributed by only knowledge of the 

case clustering as a type of methods variable.  

 

 

 

 

 

Table 9. Form A cluster loadings for each case.  

 

Case Positive cluster loadings Negative cluster loadings 

B V11ABA, V51ABK, V53ABN (3 items) V12ABB 

C V32AEG, V33AEI, and V51AEL 

(3 Items) 
V13AEC 

E V21AIA, V23AID, V41AII and V44AIL (4 

items) 
V26AIH 

F V22AJA, V23AJB, V24AJD, V41AJH. and 

V43AJJ (5 items) 
V25AJE (almost significant) 

G V11ADA, V12ADB, V31ADD, V31ADE , 

V32ADF, V34ADJ, V53ADN and  V53ADO 

(8 Items) 

 

H V41AFI, V44AFL, and V44AFM (3 Items) V25AFF 

 

Figure 13 provides a scatterplot of the one factor normal ogive estimated factor loadings and the 

bi-factor estimate loadings for Form A. The linear trendline is also plotted indicating that the one 

factor normal ogive loading estimates correspond linearly with the bi-factor estimated loadings 

from the multi-factor confirmatory factor analysis with one independent dimension estimated for 

each of the six case clusters present in Form A.  

 

Figure 13. One Factor Normal Ogive Loading Estimates and Bi-Factor Loading Estimates 
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Figure 14. Standard Errors for First Factor One Factor Model and Bi-Factor Model 

                                                                                                                                                                                    

 
 

For Form A Figure 15 presents an analysis of the RSquared model fit for the normal ogive one 

factor model and the bi-factor model RSquared with the base primary factor and then separate 

independent dimensions for each of the case scenario clusters. A linear best fitting linear trend 

line is also displayed by the solid black line. A diagonal line is also represented by the blue 
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diamonds. Since the majority of the RSquared values are above the diagonal line, this indicates 

that the bi-factor model provides measurable and significant variance beyond the measurement 

available with the one factor normal ogive model.  

 

Figure 15. RSquared for One Factor Normal Ogive Model and Bi-Factor Model 

  

 
 

For Form A, Table 10 provides statistics for the Loadings, Standard Errors and RSquare values 

for the one factor model and the bi-factor model. The loadings and standard errors are very 

comparable between models but also the RSquares are slightly larger for the bi-factor model than 

for the one factor normal ogive model.  

 

Table 10. Form A Loadings, Standard Errors and RSquare for One Factor Model and Bi-

Factor Model  

Loadings Standard Errors RSquare 

One 

Factor 

Model 

Bi-Factor 

Model 

One Factor 

Model 

Bi-Factor 

Model 

One Factor 

Model 

 

Bi-Factor 

Model 

AVERAGE 0.697 0.692 0.046 0.047 0.495 0.581 

STD DEV 0.095 0.097 0.014 0.015 0.126 0.137 

MIN 0.424 0.427 0.024 0.025 0.180 0.183 

MAX 0.843 0.839 0.094 0.094 0.710 0.829 

MEDIAN 0.711 0.703 0.045 0.047 0.505 0.596 

 

Table 11 presents the comparable analysis for the one factor model and the bi-factor model for 

Form B. Loadings greater or less than 0.200 were classified as significant in Table 11 and 12 for 

Form B.  
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Table 11. Form B Comparing One Factor and Bi-Factor with Item Clustering    

 

One Factor 

Model  

BiFactor 

Model 

 BiFactor 

Model 

 

Form B 

One Factor  

Estimated 

Loadings 

Standard 

Errors 

General 

Loading 

 Cluster 

Loading 

 

Item Variable CASE Estimate SE Loading SE Loading SE 

V13AAC A 0.688 0.041 0.689 0.041 0.072 0.085 

V14AAD A 0.832 0.025 0.832 0.026 0.444 0.078 

V31AAE A 0.673 0.049 0.676 0.049 0.228 0.087 

V31AAF A 0.733 0.034 0.730 0.034 0.208 0.068 

V32AAG A 0.672 0.045 0.669 0.045 0.274 0.096 

V33AAH A 0.604 0.048 0.604 0.048 0.118 0.090 

V34AAJ A 0.621 0.050 0.626 0.049 0.387 0.086 

V34AAK A 0.583 0.056 0.587 0.056 0.311 0.082 

V51AAL A 0.740 0.043 0.741 0.043 0.036 0.082 

V52AAM A 0.706 0.053 0.709 0.053 0.205 0.084 

V53AAO A 0.685 0.053 0.688 0.053 0.245 0.083 

V11ABA B 0.744 0.048 0.748 0.047 0.087 0.066 

V12ABB B 0.784 0.037 0.787 0.037 0.076 0.056 

V14ABD B 0.476 0.075 0.458 0.077 0.357 0.076 

V31ABE B 0.459 0.045 0.418 0.048 0.664 0.064 

V32ABG B 0.510 0.060 0.474 0.064 0.584 0.064 

V33ABH B 0.457 0.047 0.444 0.048 0.240 0.068 

V34ABJ B 0.420 0.050 0.370 0.053 0.727 0.065 

V51ABK B 0.668 0.059 0.674 0.059 0.100 0.070 

V51ABL B 0.748 0.055 0.749 0.054 0.012 0.067 

V52ABM B 0.496 0.046 0.485 0.048 0.238 0.068 

V53ABN B 0.601 0.054 0.611 0.053 0.183 0.074 

V21AHA D 0.691 0.063 0.693 0.063 0.371 0.088 

V22AHB D 0.799 0.048 0.797 0.048 0.146 0.092 

V23AHC D 0.521 0.068 0.524 0.068 0.463 0.097 

V23AHD D 0.541 0.045 0.545 0.045 0.313 0.088 

V24AHF D 0.833 0.026 0.831 0.027 0.302 0.068 

V25AHG D 0.675 0.042 0.679 0.042 0.268 0.081 

V26AHH D 0.718 0.037 0.717 0.038 0.219 0.077 

V41AHI D 0.622 0.041 0.623 0.041 0.079 0.079 

V42AHJ D 0.697 0.049 0.700 0.049 0.204 0.083 

V43AHK D 0.657 0.042 0.657 0.042 0.058 0.079 
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V44AHL D 0.836 0.032 0.834 0.032 0.209 0.070 

V44AHM D 0.727 0.038 0.727 0.038 0.136 0.076 

V23AIC   E 0.001 0.053 0.026 0.053 0.794 0.241 

V41AII E 0.743 0.034 0.739 0.034 0.204 0.076 

V44AIL E 0.815 0.026 0.811 0.027 0.260 0.081 

V44AIM E 0.571 0.039 0.565 0.040 0.226 0.088 

V14ADC G 0.417 0.052 0.406 0.053 0.576 0.202 

V33ADH G 0.369 0.050 0.363 0.051 0.416 0.147 

V52ADM G 0.740 0.039 0.746 0.039 0.235 0.102 

V53ADN G 0.781 0.052 0.782 0.052 0.063 0.092 

V53ADO G 0.726 0.063 0.725 0.063 0.143 0.100 

V22AGB I 0.800 0.038 0.802 0.038 0.179 0.089 

V23AGD I 0.704 0.043 0.705 0.043 0.055 0.091 

V24AGE I 0.745 0.038 0.746 0.038 0.099 0.091 

V25AGF I 0.776 0.031 0.781 0.031 0.392 0.135 

V26AGG I 0.660 0.061 0.664 0.062 0.393 0.134 

V41AGH I 0.843 0.025 0.844 0.025 0.093 0.076 

V43AGJ I 0.772 0.039 0.774 0.039 0.215 0.095 

    

AVERAGE 0.654 0.046 0.652 0.046 0.258 0.090 

STD DEV 0.154 0.011 0.157 0.011 0.180 0.033 

MIN 0.001 0.025 0.026 0.025 0.012 0.056 

MAX 0.843 0.075 0.844 0.077 0.794 0.241 

MEDIAN 0.690 0.046 0.691 0.048 0.223 0.083 

ITEMS 50     

OBSERVATIONS 640     

 

Summary information is provided at the bottom of the Table 11 for Form B for the average, 

standard deviation, minimum, maximum, median, the number of items and total observations. 

This summary information shows that the average loadings for the one factor model are 0.654 

with a standard deviation of 0.154 while the average of the loadings for the bi-factor model are 

just slightly less at 0.692 with a standard deviation of 0.157. The average of the loadings for the 

clustered items within cases is 0.258 with a standard deviation of 0.180. The high and low 

clustered loadings are 0.012 and .794 with a median cluster loading of 0.223. Average standard 

errors for the one factor model are 0.046 and for the bi-factor underlying factor 0.046 and for the 

clustered loadings 0.090. There are 50 items and 640 observations for Form B.  

For Form B Table 12 shows that there are significant positive cluster loadings across the cases. 

No negative cluster loadings were found. This indicates that the confirmatory factor analysis was 

able to identify independent and orthogonal variables and factor variance that are contributed by 

only knowledge of the case clustering as a type of methods variable.  

 

Table 12. Form B Summary of cluster loadings for each case.  
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Case Positive cluster loadings 
A V14AAD, V31AAE, V31AAF, V32AAG, V34AAJ, 

V34AAK, V52AAM and V53AAO (8 Items) 

B V14ABD,V31ABE, V32ABG, V33ABH, V34ABJ, and 

V52ABM (6 Items) 
D V21AHA, V23AHC, V24AHF, V25AHG, V26AHH, 

V42AHJ, V44AHL (7 Items) 

E V23AIC, V41AII, V44AIL and V44AIM (4 Items) 

G V14ADC, V33ADH, V52ADM (3 Items) 

I V25AGF, V26AGG and V43AGJ 

 

Figure 16 provides a scatterplot of the one factor normal ogive estimated factor loadings and the 

bi-factor estimate loadings for Form B. The Linear trendline is also plotted indicating that the 

one factor normal ogive loading estimates correspond linearly with the bi-factor estimated 

loadings from the multi-factor confirmatory factor analysis with one independent dimension 

estimated for each of the 6 case clusters present in Form B. One item, V23AIC from Case E, had 

numerical estimation problems and was not well estimated in either the one factor normal ogive 

model or the bi-factor solution and was eliminated from the graphic in Figure 14. This item had  

very low loading estimates of .001 for the normal ogive model and .026 for the bi-factor model. 

That item also was the most difficult item on the form and had a near zero point-biserial 

correlation with the total score.   

Figure 16. One Factor Normal Ogive Loading Estimates and Bi-Factor Loading Estimates 

 

 
 

 

Figure 17 provides a scatterplot of the one factor normal ogive estimated factor loadings and the 

bi-factor estimate loadings for Form B. The Linear trendline is also plotted indicating that the 

one factor normal ogive loading estimates correspond linearly with the bi-factor estimated 
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loadings from the multi-factor confirmatory factor analysis with one independent dimension 

estimated for each of the 6 case clusters present in Form B. 

 

Figure 17. Standard Errors for First Factor of One Factor Model and Bi-Factor Model 
  

 
 

For Form B Figure 18 presents a comparison of the RSquared model fit for the normal ogive one 

factor model and the bi-factor model RSquared with the base primary factor and then separate 

independent dimensions for each of the case scenario clusters. A linear best fitting linear trend 

line is also displayed by the solid black line. A diagonal line is also represented by the red 

squares. Since the majority of the RSquared values are above the equal diagonal line, this 

indicates that the bi-factor model provides measurable and significant variance beyond the 

measurement attributable to the one factor normal ogive model.  

 

Figure 18. RSquared for One Factor Normal Ogive Model and Bi-Factor Model 
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For Form B Table 13 provides statistics for the Loadings, Standard Errors and RSquare for the 

one factor model and the bi-factor model. The loadings are very comparable between models, the 

standard errors and the RSquare is slightly larger for the bi-factor model.  

 

Table 13. Form B Loadings, Standard Errors and RSquare for One Factor Model and Bi-

Factor Model  

Loadings Standard Errors RSquare 

One 

Factor 

Model 

Bi-Factor 

Model 

One Factor 

Model 

Bi-Factor 

Model 

One Factor 

Model 

 

Bi-Factor 

Model 

AVERAGE 0.654 0.652 0.046 0.046 0.451 0.547 

STD DEV 0.154 0.157 0.011 0.011 0.167 0.131 

MIN 0.001 0.026 0.025 0.025 0.000 0.255 

MAX 0.843 0.844 0.075 0.077 0.711 0.889 

MEDIAN 0.690 0.691 0.046 0.048 0.476 0.549 

 

Although the bi-factor model accounts for variance for each of the cases, there was a significant 

residual variance that was not accounted for each variable in the bi-factor model. For Form A the 

average residual variance was 0.419 with a standard deviation of 0.137. The minimum residual 

variance for an item variable was 0.171, the maximum residual variance for an item variable was 

0.817 and the median residual variance was 0.404. For Form B the average residual variance was 

0.453 with a standard deviation of 0.131. The minimum residual variance for an item variable 

was 0.111, the maximum residual variance for an item variable was 0.745 and the median 

residual variance was 0.451. These results show that there substantial variance in the item 

variables for each test form that was not accounted for by the general loading on the first latent 

dimension and the cluster loading.   

 

One Factor Logistic Regression Model  
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A one factor logistic regression model was also computed for the confirmatory factor analysis 

using the item response theory parameterization with the two-parameter logistic metric where the 

logit is 1.7* Discrimination*(Theta-Difficulty). The analysis for this model is provided in 

Appendix B. With the logistic regression parameterized model for Form A the average estimated 

loading on the one latent dimension is 1.861 with a standard deviation of 0.549. The minimum 

loading is 0.579 and the maximum loading is 3.088 with a median loading of 1.835. Standard 

errors for Form A are 0.254 with a standard deviation of 0.068.  

 

With the logistic regression parameterized model for Form B the average estimated loading on 

the one latent dimension is 1.651 with a standard deviation of 0.618. The minimum loading is 

0.144 and the maximum loading is 3.020 with a median loading of 1.665. Standard errors for 

Form A are 0.219 with a standard deviation of 0.068. 

 

Figures 19 and 20 show the estimated primary factor loadings from the one factor normal ogive 

model and the one factor logistic regression model. Exponential trend lines are also plotted on 

these graphs showing that there is a logarithmic relationship between the two loadings. This 

result was expected due to the calibration of the logistic regression model for Forms A and B.  

  

 

Figure 19. Form A Estimated Primary Factor Loadings from the One Factor Normal Ogive 

Model and the One Factor Logistic Model 

 

 
 

 

Figure 20. Form B Estimated One Factor Loadings from the One Factor Normal Ogive 

Model and the One Factor Logistic Model 
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Figure 21 and 22 present results of standard error analysis for the first factor estimation for the 

weighted least squares model and the one factor logistic model for Forms A and B. These figures 

both show that the standard errors of the estimated first factor loadings for the logistic model are 

three to four times larger than the standard errors computed for the first factor loadings of the 

normal ogive weighted least squares solution with mean and variance correction. There is also a 

negative slope for the linear (black) and exponential (blue) trendlines for the standard errors.  

 

Figure 21. Form A Standard Errors for one factor solution and the one factor logistic 

model  

 

 
 

Figure 22. Form B Standard Errors for one factor solution and the one factor logistic 

model  
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Figures 23 and 24 present the RSquared comparisons for the first factor normal ogive model and 

the first factor for the logistic model. The figure shows that the RSquared accounting for 

variance is very similar for the one factor normal ogive model and the one factor logistic model. 

The RSquared is well fit by either a linear or exponential trendline.  

 

Figure 23 Form A RSquared analysis for one factor normal ogive model and one factor 

logistic model 

 

 
 

 

 

 

Figure 24 Form B RSquared analysis for one factor normal ogive model and one factor 

logistic model. The linear trendline is a better fit than the exponential trendline for Form B.  
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The normal ogive model weighted least squares and the logistic model also computed estimates 

of IRT item difficulty and item discrimination for Forms A and B. Item Difficulty comparisons 

are provided in Figures 25 and 26 and the Item Discrimination comparisons are provided in 

Figures 27 and 28. In Figure 25, the one point (-3.376, -4.545) was the item from Form A that 

had difficulty being numerically estimation.  

 

Figure 25 Form A IRT Difficulty Indices for One Factor Normal Ogive Model and  

One Factor Logistic Model. 
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Figure 26 Form B IRT Difficulty for One Factor Normal Ogive Model and  

One Factor Logistic Regression Model.  

 

 
 

 

 

 

Figure 27 Form A IRT Discrimination Indices for One Factor Normal Ogive Model and  

One Factor Logistic Model  

 

 
 

For Form A, 26 of 50 total items have IRT discrimination indices greater than 1.0 for the one 

factor model and 29 of 50 total items have IRT discrimination indices greater than 1.0 for the 

logistic model. 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00 2.00 4.00 6.00

D
if

fi
cu

lt
ie

s 
fo

r 
O

n
r 

F
a

ct
o

r 
Lo

g
is

ti
c 

M
o

d
e

l

Difficulties for One Factor Normal Ogive Model

Difficulty

Linear (Difficulty)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
is

cr
im

in
a

ti
o

n
 f

o
r 

O
n

e
 F

a
ct

o
r 

Lo
g

is
ti

c 

M
o

d
e

l

Discrimination One Factor Model

Discrimination

Linear (Discrimination)



39 

 

Figure 28 Form B IRT Discrimination Indices for One Factor Normal Ogive Model and  

One Factor Logistic Model.  

 

 
 

For Form B, 21 of 50 total items have IRT discrimination indices greater than 1.0 for the one 

factor model and 40 of 50 total items have IRT discrimination indices greater than 1.0 for the 

logistic model. 

 

In summary the confirmatory factor analysis for both Forms A and B provides classical item 

analysis p value statistics, confirmatory factor loadings on the single dimension underlying the 

data. If the data are multi-dimensional, the confirmatory factor analysis will indicate the number 

of underlying primary dimensions present in the data. The confirmatory factor analysis results 

also provide item thresholds, item discriminations, item difficulties in the theta metric, 

standardized loading estimates, and RSquared statistics. Each statistic computed has standard 

errors reported for each variable analyzed.  

 

Correlation Analysis Within and Across Case Clusters. 

An analysis was conducted to determine if inter-item correlations were greater within the case 

clusters rather than across the case clusters. This analysis is presented in Table 14. The table 

includes the mean correlation, the standard deviation of the correlations, the minimum 

correlation and the maximum correlation. For each of the test forms, the mean correlations are 

higher within the cases by about .04 on average than across the cases. The standard deviations 

show a mixed pattern with a smaller standard deviation across than within cases for Form A. For 

Form B the standard deviation is greater across cases than within cases. For Form A the 

minimum correlation is the same within as across cases. For Form B the correlation is smaller 

across cases than within cases. For both Form A and Form B, the maximum correlation is greater 

across cases than within cases. The general result from this analysis was that there was a slightly 

larger correlation (but only 0.04) within the case groups then across the cases.  
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Table 14. Analyses of Across and Within Correlations of Cases by Form 

Form A Form B 

Across Within Across Within 

Mean 0.230 0.264 0.214 0.257 

S.D. 0.080 0.089 0.102 0.096 

Min 0.010 0.037 -0.174 -0.116 

Max 0.550 0.505 0.524 0.469 

 

Stability of Item Parameter Estimation by Differential Item Functioning (DIF)  

A Differential Item Functioning analysis using Rasch item meassures and Mansel/Haenszel 

statistics was conducted to verify the stability of item parameter estimation from two random 

samples of examinees. The analysis was conducted by fixing person ability estimates for the test 

forms, estimating the Master‟s partial credit parameters for each items on each form, estimating 
item measures for two random samples of examinees for each item on each form and then 

evaluating the t statistic and Mansel/Haenszel statistics for each item for the two random 

samples. Figure 29 shows that Rasch Measures from two random samples of examinees 

receiving each of the 89 test items. This plot shows a strong linear trend between the Rasch 

measures from the two independent samples. The plot also shows the diagonal indicated by the 

red squares which would indicate an identical measure for each sample.  

 

 

 

 

 

 

 

 

 

 

 



41 

 

Figure 29 Rasch Measures for Differential Item Functioning (DIF) from Two Random 

Samples 

 

 

There were four items of the 89 test items that exhibited significant or near significant 

Differential Item Functioning as measured by the Welch‟s (Student‟s)  t statistic and the Mantel 

Haenszel statistic which would indicate a lack of local item independence for these items given 

two random examinee samples. Two items were from Case D, one from case G and one from 

Case H. Eighty-five of the eighty-nine items (96%) showed no differential item functioning and 

would indicate stability of item parameter estimation.  

Table 15 Items Showing Significant DIF from Two Random Samples 

PERSON 

DIF DIF 

PERSON 

DIF DIF 

 Welch  

Mantel Haenszel ITEM CASE 

SAMPLE  1 

MEASURE S.E. 

SAMPLE  2 

MEASURE S.E. t df Prob. Prob. Size Name CASE 

-1.12 0.24 -0.33 0.19 -2.56 622 0.0107 0.0132 -0.27 2.3.ahc D 

0.58 0.15 0.19 0.17 1.7 622 0.0893 0.0412 0.34 2.4.ahf D 

-1.19 0.26 -0.26 0.21 -2.77 517 0.0057 0.0091 -0.80 3.4.ADI G 

0.28 0.18 0.77 0.17 -2.01 523 0.0449 0.0841 -0.43 4.1.afi H 
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Conclusions      

The measurement dataset employed in the analysis was from an information technology 

certification test administered in two test forms of 50 items in length and administered to 

approximately 630-640 individuals. The fifty items per form were also grouped into six case 

scenarios that give the context setting for the individual items.  

 Classical item and test analysis was conducted on the two test forms. The analysis showed that 

test Form A was measurably easier than Form B as indicated by the mean score which was 

higher by two points than Form A and the median score which was higher by four points than 

Form A. The test score ranges were the same and the alpha reliabilities of the forms were 0.939 

for Form A and 0.928 for Form B. The standard error of measurement for the two test forms was 

2.07 for Form A and 2.33 for Form B out of the 50 possible items. The reverse cumulative score 

distribution for the two forms also showed that Form A was easier than Form B. Test 

characteristic curves for the two forms showed that Form A was slightly easier in the middle to 

upper portion of the ability continuum. Test information curves also indicated that Form A has 

higher information at the center portion of the ability continuum.  

Classical item analysis and Rasch analysis was completed for the 89 unique items on Forms A 

and B. Eleven anchor items were administered in both Form A and Form B. The item analysis 

provided the following summary statistics. These item analysis statistics indicate that the test 

items are relatively easy with average p values of .84 and median p values of 0.86. The items 

show good correlations to the total score with average and median point biserials of 0.49. The 

items also show a Rasch measurement range from -1.43 to a maximum of +3.15 with an average 

of 0.0 and a standard deviation of 0.871.  

Statistic Average Std Dev Minimum Maximum Median 

P value 0.837 0.102 0.34 0.95 0.86 

Point Biserial 0.490 0.100 0.05 0.67 0.49 

Rasch 

Measure 

0.00 0.871 -1.43 3.15 -0.16 

 

In this paper the Master‟s partial credit Rasch analysis was computed. The partial credit analysis 

indicated that six of the nine case scenario clusters showed acceptable fit between the empirical 

and modeled item response functions. Three of the case scenario clusters showed poor fit 

between the empirical and modeled item response functions. A comparison of the average Rasch 

measures at the item level and at the case group level indicated that four cases with individual 

item average Rasch measures were within measure values of 0.20 of the case group average 

Rasch measures. Each of the nine cases showed wide range variance of the Rasch measures.  

Dimensionality of the results was verified with principal components analysis and a 

unidimensional construct was found to account for the examinee responses within each test form. 

In each form all items had significant loadings on the first principal component. The 

unidimensional first principal component accounted for approximately 25% of the variance in 

the item responses and the ratio of the first to second eigenvalues of the test forms were 4.4 and 
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4.2 for Forms A and B respectively. Subsequent eigenvalue ratios dropped to 1.74 and 1.3 for the 

ratio of second to third eigenvalues and 1.3 to 1.6 for all subsequent eigenvalues. These results 

suggest that a unidimensional principal measurement component is present within each of the 

two test forms.  

Confirmatory factor analysis demonstrated that the item scores within each test form were 

unidimensional with two different IRT models: 1) a one factor weighted least squares with mean 

and variance correction using a two parameter IRT normal ogive model and 2) a one factor 

logistic regression model using the logistic form of the two parameter IRT model. All items 

loaded significantly on the primary unidimensional factor for both the IRT normal ogive model 

and the IRT logistic regression model. The most difficult item in Form A with a p value of 0.34 

and an item total correlation of 0.05 had numerical estimation problems and was set to a 

difficulty value of +5.0 on the theta metric in comparison to the rest of the items.        

The confirmatory factor analysis included a bi-factor analysis and a unidimensional factor was  

estimated. From the remaining residual variance six independent and orthogonal factors were 

estimated and modeled. For each test form the first dimension of the bi-factor model included 

items within the first case group and all remaining five case groups included in that form. The 

second dimension of the bi-factor model included the second case group and the remaining four 

case groups. The same factor dimension and modeling procedure was computed and the last 

dimension modeled included only the items from the sixth case group per form.  

 

Form A included several significant positive cluster loadings for each case and a few negative 

cluster loadings for four of the six cases and an additional case with a near significant item case 

loading.  Form B included several significant positive cluster loadings for each case and no 

negative loadings.  The bi-factor analysis results demonstrated from the residual variance after 

the primary factor extraction, measurable variance that could attributed to each case group and 

separate independent and orthogonal dimensions could be modeled and item loadings could be 

estimated for each item on each of the separate independent orthogonal dimensions.    

 

For both test forms there was a linear relationship between the factor loadings of the one factor 

normal ogive model and the bi-factor model indicating that each model was extracting the 

primary unidimensional latent factor for the examinees responses. A linear relationship was 

found between the standard errors for the one factor normal ogive model and the bi-factor model. 

The RSquared comparisons of the normal ogive and the bi-factor models showed that the IRT bi-

factor model accounted for 8% in Form A and 10% in Form B more average variance and a 

median of 10% in Form A and 7% in Form B more variance than the IRT normal ogive model.  

As expected, exponential relationship were found between the primary factor loadings and 

between the standard errors for the one factor IRT normal ogive model and the IRT logistic 

regression model. 

Discussion 

This paper investigates alternative approaches for analyzing item and task models to better 

understand the statistical relationships among individual test items and items that are grouped in 

parcels, bundles, clusters, families, or testlets. The literature review has identified a long standing 

interest in exploring items that are related within a domain or presentation unit and how these 
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items and clusters can be analyzed for measurement purposes. We feel the systematic 

investigation of item and task models for item families, bundles or clusters has the potential to 

make a significant and meaningful scientific contribution to educational measurement. If the 

item family, bundle or cluster can be calibrated rather than individual test items then sibling 

items drawn from the family cluster could be administered without recalibration if the sibling 

item falls within the expected item family parameters. To provide meaningful educational or 

proficiency measurement value, the item family or cluster concept must satisfy the following 

conditions: 1) include representative samples from the target content or trait domains, 2) the 

families or clusters of items should measure different portions rather than the same portions of 

the ability or proficiency domain, and 3) the range and variation of the item family parameters 

for item difficulty, discrimination and model misfit should be sufficiently small to permit 

allocation and estimation of the parameters for each specific family or item cluster. When the 

item family or cluster is sufficiently defined then it is hypothesized that the item difficulty, 

discrimination and model misfit parameters for the item family is applicable to each sibling item 

drawn or generated from the item family or cluster.  

Research within the same family or item cluster groups often shows substantial variations in p 

values and IRT proficiency estimates from items within the same family or testlet group. 

Research has also shown that items that were developed to be isomorphs often exhibited wider 

variation than expected in statistical difficulty and calibrations.  

Test scores or IRT proficiency estimates are accumulated over a series of items or performance 

tasks administered. These item and score estimates can be reported at multiple levels of 

aggregation. The item family can be considered one of the aggregation levels for the test scores.    

The p values, point biserial correlations and Rasch measures were calculated for each of the 

individual test items. In a similar manner p values, point biserial correlations and Rasch 

measures can be calculated from aggregated scores from the individual case clusters rather than 

individual item scores. The p value can be computed as the average item score and referenced 

against the total number of points possible per item family or cluster. If the average item score is 

divided by the number of points possible an adjusted p value can be computed for the item 

family or cluster. The biserial correlation can be computed between the item cluster score and the 

total test score. With clustered item scores, the biserial correlation has a stronger theoretical base 

than the point biserial correlation. A partial credit or polytomous Rasch measure can also be 

computed for the item cluster score. 

 Since scores on each of the alternate forms showed high examinee performance, one alternative 

explanation for the presence of an underlying overall latent exam dimension and separate 

dimensions for the case clusters could be the presence of pre-knowledge or over exposure of 

items and case clusters. Some examinees may be responding to the exam based on their level of 

underlying knowledge of the content and other examinees may be responding based on pre-

knowledge of the item or case based on content overexposure.    

In preparing this paper the researchers noted the difficulty in finding and receiving permission 

for using common data sets for scientific investigation and cross-validation from different 

researchers for analysis of the item family concept. The research dataset used was not designed 

to test the item family concept but provided a good model for investigation of alternative item 

and task modeling approaches.       
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Appendix A  

Table 2. Item Analysis and Rasch Measures at the Item Level. 

(Lines in the body of the table separate the measurement of specific content objectives from the 

blueprint) 

Count Case Item ID 
Rasch 

Measure 
MNSQ 

Infit 
MNSQ 
Outfit P-value 

Item-Score 
Correlation 

Item 
Reliability 

Number of 
Responses Time 

1 B 1.1.aba -0.85 0.96 0.66 0.92 0.49 0.14 1270 27.0 

2 G 1.1.ADA -1.17 1.03 1.26 0.94 0.41 0.10 631 26.0 

3 B 1.2.abb -0.17 0.89 0.69 0.87 0.57 0.19 1270 22.0 

4 B 1.2.ADB -1.32 1.02 1.14 0.95 0.42 0.09 631 25.0 

5 C 1.2.AEB 0.43 0.91 0.85 0.83 0.59 0.22 631 34.0 

6 A 1.3.aac 0.02 0.99 0.79 0.84 0.50 0.19 639 33.0 

7 C 1.3.aec 0.80 0.99 0.82 0.78 0.54 0.22 631 53.0 

8 A 1.4.aad 0.48 0.81 0.62 0.79 0.63 0.26 639 37.0 

9 B 1.4.abd -0.89 1.18 1.17 0.91 0.32 0.09 639 34.0 

10 G 1.4.ADC 0.77 1.23 1.07 0.75 0.34 0.15 639 33.0 

11 C 2.1.aea 0.92 0.83 0.68 0.77 0.64 0.27 631 44.0 

12 D 2.1.aha -1.32 0.98 0.83 0.94 0.45 0.11 639 37.0 

13 E 2.1.AIA -0.43 1.01 0.91 0.90 0.49 0.15 631 28.0 

14 I 2.2.AGB -0.46 0.84 0.71 0.88 0.60 0.19 639 29.0 

15 D 2.2.ahb -1.43 0.93 0.46 0.94 0.50 0.12 639 32.0 

16 F 2.2.aja -0.50 1.17 1.14 0.90 0.36 0.11 631 25.0 

17 H 2.3.afd -0.01 1.05 1.26 0.87 0.47 0.16 631 35.0 

18 I 2.3.AGD -0.19 0.95 1.08 0.86 0.53 0.18 639 32.0 

19 D 2.3.ahc -0.70 1.12 1.36 0.90 0.36 0.11 639 31.0 

20 D 2.3.ahd 0.84 1.10 1.07 0.74 0.43 0.19 639 56.0 

21 E 2.3.AIC 3.15 1.71 2.39 0.34 0.05 0.02 639 60.0 

22 E 2.3.AID 0.13 0.98 0.96 0.85 0.53 0.19 631 38.0 

23 F 2.3.ajb 0.47 1.12 1.08 0.82 0.46 0.18 631 29.0 

24 I 2.4.AGE 0.00 0.92 0.82 0.84 0.55 0.20 639 28.0 

25 D 2.4.ahf 0.40 0.80 0.65 0.80 0.64 0.26 639 51.0 

26 E 2.4.AIE -1.13 0.96 0.81 0.94 0.48 0.12 631 30.0 

27 F 2.4.ajd 0.82 0.98 0.83 0.78 0.55 0.23 631 31.0 

28 H 2.5.aff 0.40 1.03 1.00 0.83 0.51 0.19 631 43.0 

29 I 2.5.AGF 1.05 0.84 0.72 0.71 0.59 0.27 639 40.0 

30 D 2.5.ahg 0.06 0.98 0.97 0.83 0.51 0.19 639 56.0 

31 F 2.5.aje -0.60 0.97 0.75 0.91 0.52 0.15 631 30.0 

32 I 2.6.AGG -0.99 0.99 1.37 0.92 0.44 0.12 639 39.0 

33 D 2.6.ahh 0.62 0.91 0.88 0.77 0.55 0.23 639 54.0 

34 E 2.6.AIH 0.80 1.27 1.53 0.78 0.39 0.16 631 49.0 

35 F 2.6.ajf -0.32 0.98 0.93 0.89 0.51 0.16 631 30.0 

36 F 2.6.ajg 1.00 0.87 0.79 0.76 0.62 0.27 631 40.0 

37 A 3.1.aae -0.44 0.98 0.93 0.88 0.49 0.16 639 36.0 

38 A 3.1.aaf 0.52 0.92 0.84 0.78 0.56 0.23 639 29.0 

39 B 3.1.abe 1.54 1.14 1.08 0.63 0.38 0.19 639 80.0 

40 G 3.1.ADD -0.40 1.10 1.52 0.90 0.40 0.12 631 26.0 

41 G 3.1.ADE -0.65 1.09 1.08 0.91 0.41 0.12 631 31.0 

42 C 3.1.AEE -0.01 1.10 1.43 0.87 0.44 0.15 631 68.0 

43 A 3.2.aag -0.16 1.01 0.84 0.86 0.49 0.17 639 53.0 

44 B 3.2.abg -0.19 1.15 0.98 0.86 0.38 0.13 639 57.0 

45 G 3.2.ADF -0.70 0.97 1.13 0.92 0.48 0.13 631 28.0 

46 C 3.2.AEG 1.14 0.89 0.83 0.74 0.61 0.27 631 35.0 
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Count Case Item ID 
Rasch 

Measure 
MNSQ 

Infit 
MNSQ 
Outfit P-value 

Item-Score 
Correlation 

Item 
Reliability 

Number of 
Responses Time 

47 A 3.3.aah 0.11 1.06 0.99 0.83 0.45 0.17 639 49.0 

48 B 3.3.abh 2.25 1.06 1.24 0.50 0.37 0.18 639 59.0 

49 G 3.3.ADG 0.82 1.25 1.42 0.78 0.40 0.16 631 51.0 

50 G 3.3.ADH 2.16 1.16 1.42 0.52 0.33 0.16 639 56.0 

51 C 3.3.AEH -0.23 0.97 0.77 0.88 0.53 0.17 631 27.0 

52 C 3.3.AEI -0.07 0.91 0.81 0.87 0.57 0.19 631 29.0 

53 A 3.4.aaj -0.19 1.03 0.92 0.86 0.47 0.16 639 45.0 

54 A 3.4.aak -0.31 1.06 1.20 0.87 0.43 0.14 639 44.0 

55 B 3.4.abj 1.10 1.21 1.18 0.70 0.34 0.16 639 35.0 

56 G 3.4.ADI -0.67 0.89 0.59 0.91 0.57 0.16 631 25.0 

57 G 3.4.ADJ -0.43 1.18 1.74 0.90 0.35 0.11 631 26.0 

58 C 3.4.AEK -0.23 1.01 1.21 0.88 0.49 0.16 631 38.0 

59 H 4.1.afi 0.53 0.92 0.89 0.81 0.58 0.23 631 29.0 

60 I 4.1.AGH 0.17 0.77 0.53 0.82 0.66 0.25 639 32.0 

61 D 4.1.ahi 0.72 1.04 1.16 0.75 0.48 0.21 639 42.0 

62 E 4.1.AII 0.70 0.93 0.91 0.78 0.56 0.23 1270 55.0 

63 F 4.1.ajh -0.43 0.88 0.61 0.90 0.58 0.17 631 26.0 

64 D 4.2.ahj -0.65 0.97 0.74 0.90 0.49 0.15 639 34.0 

65 F 4.2.aji -0.84 1.20 4.06 0.92 0.27 0.07 631 41.0 

66 I 4.3.AGJ -0.31 0.86 0.93 0.87 0.58 0.20 639 34.0 

67 D 4.3.ahk 0.26 0.98 0.99 0.81 0.51 0.20 639 35.0 

68 E 4.3.AIK -1.06 1.01 1.14 0.94 0.44 0.11 631 26.0 

69 F 4.3.ajj -0.65 0.96 0.84 0.91 0.50 0.14 631 29.0 

70 H 4.4.afL 0.79 0.96 0.90 0.79 0.56 0.23 631 58.0 

71 H 4.4.afm 0.23 0.92 0.93 0.84 0.58 0.21 631 37.0 

72 D 4.4.ahl -0.24 0.81 0.62 0.86 0.63 0.22 639 31.0 

73 D 4.4.ahm 0.11 0.93 0.89 0.83 0.55 0.21 639 35.0 

74 E 4.4.AIL 0.84 0.83 0.73 0.76 0.62 0.27 1270 54.0 

75 E 4.4.AIM 1.54 1.00 0.89 0.63 0.47 0.23 639 58.0 

76 F 4.4.ajl -0.79 1.00 1.21 0.92 0.46 0.12 631 39.0 

77 A 5.1.aaL -0.50 0.94 0.79 0.89 0.53 0.17 639 43.0 

78 B 5.1.abk -1.09 0.98 1.16 0.93 0.45 0.12 1270 28.0 

79 B 5.1.abl -1.15 0.94 0.71 0.93 0.50 0.12 1270 19.0 

80 G 5.1.ADL -0.52 0.83 0.63 0.90 0.61 0.18 631 17.0 

81 C 5.1.AEL 0.30 0.87 0.74 0.84 0.61 0.22 631 31.0 

82 A 5.2.aam -0.94 0.97 0.67 0.92 0.48 0.13 639 34.0 

83 B 5.2.abm 1.01 1.17 1.29 0.74 0.42 0.19 1270 43.0 

84 G 5.2.ADM -0.14 0.91 0.66 0.87 0.56 0.19 1270 20.0 

85 C 5.2.AEO 0.68 0.78 0.58 0.80 0.67 0.27 631 35.0 

86 A 5.3.aao -0.81 0.99 0.81 0.91 0.47 0.14 639 26.0 

87 B 5.3.abn -0.60 1.10 0.95 0.90 0.40 0.12 1270 23.0 

88 G 5.3.ADN -1.38 0.90 0.56 0.94 0.51 0.12 1270 20.0 

89 G 5.3.ADO -1.42 0.96 1.35 0.94 0.44 0.10 1270 26.0 
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Appendix B 

Form A Weighted Least Squares Normal Ogive Model with Mean and Variance Correction 

 

Item 

Variable CASE Estimate SE Discrimination Difficulty RSquare SE 

V11ABA B 0.712 0.050 1.013 -2.042 0.507 0.071 

V12ABB B 0.821 0.030 1.439 -1.335 0.674 0.049 

V51ABK B 0.705 0.066 0.994 -2.202 0.497 0.093 

V51ABL B 0.776 0.045 1.232 -1.966 0.603 0.070 

V52ABM B 0.550 0.045 0.659 -1.204 0.303 0.049 

V53ABN B 0.594 0.059 0.739 -2.336 0.353 0.070 

V12AEB C 0.751 0.035 1.139 -1.246 0.565 0.052 

V13AEC C 0.698 0.037 0.974 -1.135 0.487 0.052 

V21AEA C 0.800 0.030 1.332 -0.930 0.640 0.047 

V31AEE C 0.601 0.053 0.753 -1.859 0.362 0.063 

V32AEG C 0.788 0.029 1.280 -0.834 0.621 0.046 

V33AEH C 0.727 0.041 1.058 -1.657 0.528 0.060 

V33AEI C 0.769 0.038 1.205 -1.473 0.592 0.058 

V34AEK C 0.679 0.048 0.926 -1.773 0.461 0.065 

V51AEL C 0.797 0.031 1.321 -1.237 0.636 0.050 

V52AEO C 0.843 0.024 1.566 -0.999 0.710 0.041 

V21AIA E 0.682 0.049 0.933 -1.866 0.465 0.066 

V23AID E 0.715 0.040 1.023 -1.473 0.512 0.057 

V24AIE E 0.725 0.058 1.054 -2.122 0.526 0.084 

V26AIH E 0.497 0.051 0.573 -1.581 0.247 0.050 

V41AII E 0.699 0.036 0.976 -1.149 0.488 0.051 

V43AIK E 0.678 0.060 0.923 -2.231 0.460 0.082 

V44AIL E 0.796 0.028 1.315 -0.876 0.634 0.045 

V22AJA F 0.571 0.059 0.695 -2.277 0.326 0.068 

V23AJB F 0.616 0.044 0.782 -1.490 0.379 0.054 

V24AJD F 0.719 0.033 1.034 -1.086 0.517 0.048 

V25AJE F 0.735 0.043 1.085 -1.819 0.541 0.063 

V26AJF F 0.698 0.048 0.974 -1.762 0.487 0.067 

V26AJG F 0.789 0.029 1.285 -0.896 0.623 0.045 

V41AJH F 0.776 0.038 1.230 -1.640 0.602 0.060 

V42AJI F 0.424 0.094 0.468 -3.376 0.180 0.080 

V43AJJ F 0.720 0.048 1.037 -1.886 0.518 0.069 

V44AJL F 0.678 0.057 0.922 -2.079 0.460 0.078 

V11ADA G 0.650 0.068 0.855 -2.388 0.423 0.089 

V12ADB G 0.678 0.068 0.923 -2.371 0.460 0.093 

V31ADD G 0.578 0.062 0.708 -2.187 0.334 0.071 

V31ADE G 0.611 0.058 0.773 -2.220 0.374 0.070 
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V32ADF G 0.709 0.051 1.006 -1.942 0.503 0.073 

V33ADG G 0.510 0.050 0.594 -1.530 0.261 0.051 

V34ADI G 0.794 0.039 1.306 -1.723 0.630 0.062 

V34ADJ G 0.512 0.066 0.596 -2.486 0.262 0.067 

V51ADL G 0.831 0.032 1.496 -1.575 0.691 0.054 

V52ADM G 0.767 0.035 1.195 -1.508 0.588 0.053 

V53ADN G 0.803 0.051 1.347 -2.020 0.645 0.081 

V53ADO G 0.703 0.073 0.988 -2.351 0.494 0.103 

V23AFD H 0.649 0.049 0.854 -1.710 0.422 0.063 

V25AFF H 0.657 0.042 0.870 -1.445 0.431 0.055 

V41AFI H 0.783 0.031 1.258 -1.142 0.613 0.049 

V44AFL H 0.729 0.034 1.064 -1.087 0.531 0.050 

V44AFM H 0.775 0.033 1.225 -1.308 0.600 0.052 

AVERAGE 0.697 0.046 1.020 -1.697 0.495 0.063 

STD DEV 0.095 0.014 0.255 0.524 0.126 0.014 

MIN 0.424 0.024 0.468 -3.376 0.180 0.041 

MAX 0.843 0.094 1.566 -0.834 0.710 0.103 

MEDIAN 0.711 0.045 1.010 -1.684 0.505 0.061 
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Form B Weighted Least Squares Normal Ogive Model with Mean and Variance Correction 

 

Item 

Variable CASE Estimate SE Discrimination Difficulty RSquare SE 

V13AAC A 0.688 0.041 0.947 1.437 0.473 0.056 

V14AAD A 0.832 0.025 1.498 0.950 0.692 0.042 

V31AAE A 0.673 0.049 0.911 1.751 0.453 0.065 

V31AAF A 0.733 0.034 1.077 1.056 0.537 0.050 

V32AAG A 0.672 0.045 0.908 1.579 0.452 0.060 

V33AAH A 0.604 0.048 0.758 1.574 0.365 0.057 

V34AAJ A 0.621 0.050 0.792 1.732 0.386 0.062 

V34AAK A 0.583 0.056 0.717 1.932 0.340 0.065 

V51AAL A 0.740 0.043 1.099 1.627 0.547 0.064 

V52AAM A 0.706 0.053 0.998 1.946 0.499 0.075 

V53AAO A 0.685 0.053 0.940 1.935 0.469 0.072 

V11ABA B 0.744 0.048 1.114 1.782 0.554 0.071 

V12ABB B 0.784 0.037 1.262 1.456 0.614 0.058 

V14ABD B 0.476 0.075 0.542 2.843 0.227 0.071 

V31ABE B 0.459 0.045 0.517 0.705 0.211 0.041 

V32ABG B 0.510 0.060 0.594 2.107 0.261 0.061 

V33ABH B 0.457 0.047 0.513 0.009 0.208 0.043 

V34ABJ B 0.420 0.050 0.463 1.241 0.177 0.042 

V51ABK B 0.668 0.059 0.899 2.103 0.447 0.079 

V51ABL B 0.748 0.055 1.126 1.969 0.559 0.082 

V52ABM B 0.496 0.046 0.571 1.209 0.246 0.046 

V53ABN B 0.601 0.054 0.753 2.001 0.362 0.065 

V21AHA D 0.691 0.063 0.956 2.199 0.478 0.088 

V22AHB D 0.799 0.048 1.327 1.952 0.638 0.077 

V23AHC D 0.521 0.068 0.611 2.454 0.272 0.071 

V23AHD D 0.541 0.045 0.643 1.171 0.292 0.048 

V24AHF D 0.833 0.026 1.506 0.994 0.694 0.044 

V25AHG D 0.675 0.042 0.914 1.437 0.455 0.057 

V26AHH D 0.718 0.037 1.033 1.019 0.516 0.054 

V41AHI D 0.622 0.041 0.793 1.105 0.386 0.051 

V42AHJ D 0.697 0.049 0.972 1.811 0.486 0.068 

V43AHK D 0.657 0.042 0.871 1.348 0.431 0.056 

V44AHL D 0.836 0.032 1.523 1.312 0.699 0.053 

V44AHM D 0.727 0.038 1.060 1.307 0.529 0.055 

V23AIC   E 0.001 0.053 0.001 5.000* 0.000 0.000 

V41AII E 0.743 0.034 1.109 0.965 0.552 0.050 

V44AIL E 0.815 0.026 1.407 0.867 0.664 0.042 
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V44AIM E 0.571 0.039 0.696 0.559 0.327 0.045 

V14ADC G 0.417 0.052 0.458 1.601 0.174 0.043 

V33ADH G 0.369 0.050 0.398 0.106 0.136 0.037 

V52ADM G 0.740 0.039 1.100 1.426 0.547 0.058 

V53ADN G 0.781 0.052 1.252 1.978 0.611 0.082 

V53ADO G 0.726 0.063 1.055 2.129 0.527 0.092 

V22AGB I 0.800 0.038 1.332 1.485 0.639 0.061 

V23AGD I 0.704 0.043 0.990 1.529 0.495 0.061 

V24AGE I 0.745 0.038 1.116 1.336 0.554 0.057 

V25AGF I 0.776 0.031 1.232 0.701 0.603 0.049 

V26AGG I 0.660 0.061 0.879 2.113 0.436 0.081 

V41AGH I 0.843 0.025 1.570 1.098 0.711 0.043 

V43AGJ I 0.772 0.039 1.213 1.459 0.596 0.060 

AVERAGE 0.654 0.046 0.940 13.278 0.451 0.058 

STD DEV 0.154 0.011 0.330 83.440 0.167 0.016 

MIN 0.001 0.025 0.001 0.009 0.000 0.000 

MAX 0.843 0.075 1.570 5.00* 0.711 0.092 

MEDIAN 0.690 0.046 0.952 1.472 0.476 0.058 

*numerical problems in estimation set to value of 5.00 
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Form A Weighted Least Squares with mean and Variance Correction 

Bi-Factor Solution (Primary Factor Plus Independent Factor for each Case) 

Item 

Variable CASE 

General 

Loading SE 

Cluster 

Loading SE RSquare SE 

Residual 

Variance 

V11ABA B 0.703 0.051 0.455 0.107 0.701 0.100 0.299 

V12ABB B 0.836 0.030 -0.361 0.112 0.829 0.100 0.171 

V51ABK B 0.699 0.067 0.345 0.098 0.608 0.101 0.392 

V51ABL B 0.776 0.046 0.196 0.101 0.641 0.075 0.359 

V52ABM B 0.551 0.045 0.128 0.092 0.320 0.052 0.680 

V53ABN B 0.582 0.060 0.540 0.107 0.630 0.126 0.370 

V12AEB C 0.747 0.034 0.142 0.076 0.579 0.055 0.421 

V13AEC C 0.719 0.036 -0.277 0.110 0.593 0.076 0.407 

V21AEA C 0.798 0.029 0.099 0.073 0.647 0.049 0.353 

V31AEE C 0.603 0.053 0.032 0.098 0.365 0.064 0.635 

V32AEG C 0.770 0.031 0.396 0.078 0.749 0.066 0.251 

V33AEH C 0.724 0.042 0.121 0.086 0.539 0.061 0.461 

V33AEI C 0.754 0.039 0.330 0.080 0.677 0.067 0.323 

V34AEK C 0.682 0.048 0.027 0.098 0.466 0.065 0.534 

V51AEL C 0.782 0.032 0.316 0.071 0.712 0.060 0.288 

V52AEO C 0.836 0.025 0.191 0.068 0.735 0.046 0.265 

V21AIA E 0.681 0.049 0.234 0.107 0.518 0.076 0.482 

V23AID E 0.715 0.041 0.232 0.095 0.565 0.070 0.435 

V24AIE E 0.729 0.058 0.019 0.112 0.533 0.084 0.467 

V26AIH E 0.513 0.050 -0.470 0.149 0.484 0.149 0.516 

V41AII E 0.698 0.037 0.263 0.093 0.556 0.066 0.444 

V43AIK E 0.686 0.060 -0.159 0.122 0.496 0.094 0.504 

V44AIL E 0.796 0.029 0.268 0.087 0.706 0.059 0.294 

V22AJA F 0.533 0.064 0.630 0.097 0.680 0.107 0.320 

V23AJB F 0.586 0.047 0.585 0.085 0.685 0.094 0.315 

V24AJD F 0.703 0.035 0.400 0.075 0.655 0.059 0.345 

V25AJE F 0.747 0.043 -0.199 0.091 0.598 0.072 0.402 

V26AJF F 0.700 0.049 0.034 0.081 0.492 0.068 0.508 

V26AJG F 0.800 0.029 -0.138 0.072 0.659 0.053 0.341 

V41AJH F 0.770 0.040 0.224 0.075 0.643 0.058 0.357 

V42AJI F 0.427 0.094 -0.023 0.078 0.183 0.079 0.817 

V43AJJ F 0.713 0.050 0.235 0.079 0.563 0.071 0.437 

V44AJL F 0.677 0.058 0.117 0.080 0.471 0.079 0.529 

V11ADA G 0.633 0.070 0.300 0.110 0.491 0.104 0.509 

V12ADB G 0.639 0.072 0.530 0.095 0.690 0.110 0.310 

V31ADD G 0.556 0.063 0.371 0.090 0.447 0.086 0.553 
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V31ADE G 0.587 0.059 0.387 0.090 0.495 0.087 0.505 

V32ADF G 0.680 0.055 0.456 0.086 0.671 0.077 0.329 

V33ADG G 0.512 0.051 0.039 0.100 0.263 0.051 0.737 

V34ADI G 0.796 0.040 0.049 0.100 0.636 0.063 0.364 

V34ADJ G 0.501 0.066 0.222 0.097 0.300 0.081 0.700 

V51ADL G 0.839 0.032 -0.044 0.102 0.705 0.056 0.295 

V52ADM G 0.771 0.035 0.013 0.098 0.594 0.054 0.406 

V53ADN G 0.791 0.052 0.255 0.093 0.691 0.088 0.309 

V53ADO G 0.666 0.077 0.499 0.085 0.692 0.111 0.308 

V23AFD H 0.655 0.049 -0.051 0.097 0.432 0.065 0.568 

V25AFF H 0.671 0.042 -0.301 0.117 0.541 0.088 0.459 

V41AFI H 0.773 0.033 0.468 0.100 0.817 0.090 0.183 

V44AFL H 0.724 0.035 0.243 0.077 0.584 0.057 0.416 

V44AFM H 0.765 0.035 0.366 0.087 0.719 0.071 0.281 

       

AVERAGE 0.692 0.047 0.175 0.093 0.581 0.077 0.419 

STD DEV 0.097 0.015 0.252 0.015 0.137 0.021 0.137 

MIN 0.427 0.025 -0.470 0.068 0.183 0.046 0.171 

MAX 0.839 0.094 0.630 0.149 0.829 0.149 0.817 

MEDIAN 0.703 0.047 0.223 0.093 0.596 0.072 0.404 
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Form B Weighted Least Squares with mean and Variance Correction 

Bi-Factor Solution (Primary Factor Plus Independent Factor for each Case) 

Item 

Variable CASE 

General 

Loading SE 

Cluster 

Loading SE RSquare 

Residual 

Variance 

V13AAC A 0.689 0.041 0.072 0.085 0.479 0.521 

V14AAD A 0.832 0.026 0.444 0.078 0.889 0.111 

V31AAE A 0.676 0.049 0.228 0.087 0.509 0.491 

V31AAF A 0.730 0.034 0.208 0.068 0.576 0.424 

V32AAG A 0.669 0.045 0.274 0.096 0.522 0.478 

V33AAH A 0.604 0.048 0.118 0.090 0.378 0.622 

V34AAJ A 0.626 0.049 0.387 0.086 0.542 0.458 

V34AAK A 0.587 0.056 0.311 0.082 0.441 0.559 

V51AAL A 0.741 0.043 0.036 0.082 0.550 0.450 

V52AAM A 0.709 0.053 0.205 0.084 0.544 0.456 

V53AAO A 0.688 0.053 0.245 0.083 0.534 0.466 

V11ABA B 0.748 0.047 0.087 0.066 0.568 0.432 

V12ABB B 0.787 0.037 0.076 0.056 0.626 0.374 

V14ABD B 0.458 0.077 0.357 0.076 0.337 0.663 

V31ABE B 0.418 0.048 0.664 0.064 0.615 0.385 

V32ABG B 0.474 0.064 0.584 0.064 0.565 0.435 

V33ABH B 0.444 0.048 0.240 0.068 0.255 0.745 

V34ABJ B 0.370 0.053 0.727 0.065 0.666 0.334 

V51ABK B 0.674 0.059 0.100 0.070 0.464 0.536 

V51ABL B 0.749 0.054 0.012 0.067 0.562 0.438 

V52ABM B 0.485 0.048 0.238 0.068 0.292 0.708 

V53ABN B 0.611 0.053 0.183 0.074 0.406 0.594 

V21AHA D 0.693 0.063 0.371 0.088 0.618 0.382 

V22AHB D 0.797 0.048 0.146 0.092 0.657 0.343 

V23AHC D 0.524 0.068 0.463 0.097 0.488 0.512 

V23AHD D 0.545 0.045 0.313 0.088 0.395 0.605 

V24AHF D 0.831 0.027 0.302 0.068 0.783 0.217 

V25AHG D 0.679 0.042 0.268 0.081 0.533 0.467 

V26AHH D 0.717 0.038 0.219 0.077 0.562 0.438 

V41AHI D 0.623 0.041 0.079 0.079 0.394 0.606 

V42AHJ D 0.700 0.049 0.204 0.083 0.532 0.468 

V43AHK D 0.657 0.042 0.058 0.079 0.435 0.565 

V44AHL D 0.834 0.032 0.209 0.070 0.740 0.260 

V44AHM D 0.727 0.038 0.136 0.076 0.548 0.452 

V23AIC   E 0.026 0.053 0.794 0.241 0.632 0.368 

V41AII E 0.739 0.034 0.204 0.076 0.587 0.413 

V44AIL E 0.811 0.027 0.260 0.081 0.726 0.274 
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V44AIM E 0.565 0.040 0.226 0.088 0.370 0.630 

V14ADC G 0.406 0.053 0.576 0.202 0.497 0.503 

V33ADH G 0.363 0.051 0.416 0.147 0.305 0.695 

V52ADM G 0.746 0.039 0.235 0.102 0.611 0.389 

V53ADN G 0.782 0.052 0.063 0.092 0.615 0.385 

V53ADO G 0.725 0.063 0.143 0.100 0.547 0.453 

V22AGB I 0.802 0.038 0.179 0.089 0.675 0.325 

V23AGD I 0.705 0.043 0.055 0.091 0.500 0.500 

V24AGE I 0.746 0.038 0.099 0.091 0.566 0.434 

V25AGF I 0.781 0.031 0.392 0.135 0.764 0.236 

V26AGG I 0.664 0.062 0.393 0.134 0.595 0.405 

V41AGH I 0.844 0.025 0.093 0.076 0.721 0.279 

V43AGJ I 0.774 0.039 0.215 0.095 0.646 0.354 

      

AVERAGE 0.652 0.046 0.258 0.090 0.547 0.453 

STD DEV 0.157 0.011 0.180 0.033 0.131 0.131 

MIN 0.026 0.025 0.012 0.056 0.255 0.111 

MAX 0.844 0.077 0.794 0.241 0.889 0.745 

MEDIAN 0.691 0.048 0.223 0.083 0.549 0.451 
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Form A Weighted Least Squares One Factor Logistic Regression Model (2 Parameter IRT) 

Item 

Variable CASE Estimate SE Discrimination Difficulty RSquare SE 

V13AAC A 1.879 0.236 1.105 -1.960 0.518 0.063 

V14AAD A 2.735 0.336 1.609 -1.272 0.695 0.052 

V31AAE A 1.671 0.305 0.983 -2.239 0.459 0.091 

V31AAF A 2.339 0.379 1.376 -1.867 0.624 0.076 

V32AAG A 1.042 0.141 0.613 -1.239 0.248 0.050 

V33AAH A 1.354 0.179 0.797 -2.251 0.358 0.061 

V34AAJ A 2.174 0.259 1.279 -1.176 0.590 0.058 

V34AAK A 1.809 0.195 1.064 -1.074 0.499 0.054 

V51AAL A 2.599 0.290 1.529 -0.881 0.673 0.049 

V52AAM A 1.297 0.191 0.763 -1.838 0.338 0.066 

V53AAO A 2.225 0.245 1.309 -0.819 0.601 0.053 

V11ABA B 2.078 0.265 1.222 -1.541 0.568 0.063 

V12ABB B 2.245 0.308 1.321 -1.405 0.605 0.066 

V14ABD B 1.651 0.237 0.971 -1.722 0.453 0.071 

V31ABE B 2.487 0.312 1.463 -1.181 0.653 0.057 

V32ABG B 3.088 0.342 1.817 -0.953 0.744 0.042 

V33ABH B 1.781 0.232 1.048 -1.753 0.491 0.065 

V34ABJ B 1.858 0.237 1.093 -1.415 0.512 0.064 

V51ABK B 1.876 0.293 1.103 -2.085 0.517 0.078 

V51ABL B 0.950 0.135 0.559 -1.582 0.215 0.048 

V52ABM B 1.816 0.206 1.068 -1.087 0.501 0.057 

V53ABN B 1.675 0.261 0.985 -2.175 0.460 0.077 

V21AHA D 2.338 0.258 1.375 -0.854 0.624 0.052 

V22AHB D 1.139 0.168 0.670 -2.355 0.283 0.060 

V23AHC D 1.380 0.167 0.812 -1.441 0.367 0.056 

V23AHD D 1.888 0.202 1.110 -1.039 0.520 0.053 

V24AHF D 2.149 0.288 1.264 -1.690 0.584 0.065 

V25AHG D 1.793 0.254 1.055 -1.685 0.494 0.071 

V26AHH D 2.318 0.253 1.364 -0.869 0.620 0.051 

V41AHI D 2.360 0.310 1.388 -1.548 0.629 0.061 

V42AHJ D 0.579 0.218 0.341 -4.545 0.093 0.063 

V43AHK D 1.853 0.257 1.090 -1.837 0.511 0.069 

V44AHL D 1.621 0.255 0.953 -2.052 0.444 0.078 

V44AHM D 1.559 0.248 0.917 -2.330 0.425 0.078 

V23AIC   E 1.576 0.272 0.927 -2.407 0.430 0.085 

V41AII E 1.204 0.190 0.708 -2.199 0.306 0.067 

V44AIL E 1.417 0.198 0.834 -2.135 0.379 0.066 
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V44AIM E 1.649 0.261 0.970 -1.984 0.453 0.078 

V14ADC G 1.025 0.139 0.603 -1.485 0.242 0.050 

V33ADH G 2.587 0.390 1.521 -1.609 0.670 0.067 

V52ADM G 1.045 0.170 0.615 -2.449 0.249 0.061 

V53ADN G 2.999 0.441 1.764 -1.473 0.732 0.058 

V53ADO G 2.379 0.275 1.399 -1.403 0.632 0.054 

V22AGB I 2.579 0.412 1.517 -1.915 0.669 0.071 

V23AGD I 1.484 0.304 0.873 -2.574 0.401 0.098 

V24AGE I 1.503 0.211 0.884 -1.669 0.407 0.068 

V25AGF I 1.565 0.186 0.921 -1.387 0.427 0.058 

V26AGG I 2.243 0.284 1.319 -1.110 0.605 0.060 

V41AGH I 1.968 0.227 1.158 -1.035 0.541 0.057 

V43AGJ I 2.221 0.292 1.307 -1.261 0.600 0.063 

      

AVERAGE 1.861 0.254 1.089 -1.677 0.493 0.064 

STD DEV 0.549 0.068 0.323 0.633 0.147 0.011 

MIN 0.579 0.135 0.341 -4.545 0.093 0.042 

MAX 3.088 0.441 1.817 -0.819 0.744 0.098 

MEDIAN 1.835 0.255 1.068 -1.596 0.506 0.063 
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Form B Weighted Least Squares One Factor Logistic Regression Model (2 Parameter IRT) 

Item Variable CASE Estimate SE Discrimination Difficulty RSquare SE 

V13AAC A 1.788 0.209 1.052 1.354 0.493 0.058 

V14AAD A 2.868 0.331 1.687 0.897 0.714 0.047 

V31AAE A 1.590 0.208 0.936 1.729 0.435 0.064 

V31AAF A 1.952 0.227 1.148 1.013 0.537 0.058 

V32AAG A 1.640 0.208 0.965 1.524 0.450 0.063 

V33AAH A 1.348 0.172 0.793 1.523 0.356 0.058 

V34AAJ A 1.328 0.174 0.781 1.747 0.349 0.06 

V34AAK A 1.117 0.177 0.657 2.058 0.275 0.063 

V51AAL A 1.878 0.257 1.105 1.620 0.517 0.068 

V52AAM A 1.747 0.233 1.028 1.933 0.481 0.067 

V53AAO A 1.622 0.222 0.954 1.935 0.444 0.068 

V11ABA B 1.955 0.265 1.150 1.759 0.537 0.067 

V12ABB B 2.246 0.272 1.321 1.417 0.605 0.058 

V14ABD B 0.958 0.165 0.563 2.812 0.218 0.059 

V31ABE B 0.843 0.117 0.496 0.709 0.178 0.041 

V32ABG B 0.937 0.143 0.551 2.229 0.211 0.051 

V33ABH B 1.037 0.130 0.610 0.004 0.246 0.047 

V34ABJ B 0.735 0.114 0.433 1.278 0.141 0.038 

V51ABK B 1.534 0.232 0.903 2.127 0.417 0.073 

V51ABL B 1.916 0.293 1.127 1.986 0.527 0.076 

V52ABM B 0.944 0.125 0.556 1.211 0.213 0.044 

V53ABN B 1.249 0.174 0.735 2.046 0.322 0.061 

V21AHA D 1.579 0.248 0.929 2.278 0.431 0.077 

V22AHB D 2.344 0.290 1.379 1.933 0.626 0.058 

V23AHC D 0.986 0.173 0.580 2.584 0.228 0.062 

V23AHD D 1.111 0.137 0.653 1.139 0.273 0.049 

V24AHF D 2.829 0.345 1.664 0.944 0.709 0.05 

V25AHG D 1.565 0.195 0.921 1.423 0.427 0.061 

V26AHH D 1.896 0.231 1.116 0.970 0.522 0.061 

V41AHI D 1.253 0.160 0.737 1.142 0.323 0.056 

V42AHJ D 1.690 0.216 0.994 1.796 0.465 0.064 

V43AHK D 1.427 0.180 0.839 1.366 0.382 0.059 

V44AHL D 2.679 0.358 1.576 1.277 0.686 0.058 

V44AHM D 1.820 0.233 1.070 1.290 0.502 0.064 

V23AIC   E 0.144 0.086 0.084 4.596 0.006 0.007 

V41AII E 2.034 0.238 1.196 0.921 0.557 0.058 

V44AIL E 2.547 0.282 1.498 0.833 0.663 0.05 

V44AIM E 1.251 0.142 0.736 0.531 0.322 0.05 



58 

 

V14ADC G 0.717 0.114 0.421 1.677 0.135 0.037 

V33ADH G 0.716 0.109 0.421 0.100 0.135 0.035 

V52ADM G 1.968 0.245 1.158 1.382 0.541 0.062 

V53ADN G 2.191 0.287 1.289 1.969 0.593 0.063 

V53ADO G 1.770 0.288 1.041 2.179 0.488 0.081 

V22AGB I 2.247 0.316 1.322 1.476 0.605 0.067 

V23AGD I 1.734 0.225 1.020 1.500 0.477 0.065 

V24AGE I 1.944 0.254 1.144 1.309 0.535 0.065 

V25AGF I 2.374 0.280 1.396 0.658 0.631 0.055 

V26AGG I 1.440 0.235 0.847 2.191 0.386 0.077 

V41AGH I 3.020 0.334 1.776 1.038 0.735 0.043 

V43AGJ I 2.020 0.280 1.188 1.461 0.554 0.068 

      

AVERAGE 1.651 0.219 0.971 1.537 0.432 0.058 

STD DEV 0.618 0.068 0.364 0.729 0.174 0.013 

MIN 0.144 0.086 0.084 0.004 0.006 0.007 

MAX 3.020 0.358 1.776 4.596 0.735 0.081 

MEDIAN 1.665 0.226 0.980 1.469 0.458 0.060 
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