
Detecting Suspect Examinees: An Application of Differential Person Functioning Analysis 

Russell W. Smith 

Susan L. Davis-Becker 

Alpine Testing Solutions 

Paper presented at the annual conference of the National Council on Measurement in Education, 

New Orleans, LA 

April, 2011 

We would like to acknowledge and thank the test sponsor, who shall remain anonymous, for 

allowing us to use their data for the analyses in this paper. 

Russell W. Smith 

Alpine Testing Solutions 

Russell.Smith@alpinetesting.com 

mailto:Russell.Smith@alpinetesting.com


2 

 

Abstract 

 

Typical cheating statistical analyses focus on answer copying or impersonation (Cizek, 1999, p. 

136). Within some credentialing fields, a different cheating problem has emerged. Examinees are 

gaining access to the test content prior to the examination being administered via illicit means. In 

this paper we propose a new approach for detecting this type of cheating through a two-step 

process. In the first step, examinees are administered a standard test form along with an 

additional set of security items that are presumed to be uncompromised. In the second step, 

examinees’ performance on the two sets of items (exam form, security items) are compared 

through differential person functioning analysis and those examinees with suspect results (high 

performance on exam form and low performance on security items) are flagged. This process is 

detailed along with an example analysis from a certification testing program. Further analyses 

explore the accuracy with various numbers and difficulties of security items.    
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Detecting Suspect Examinees: An Application of Differential Person Functioning Analysis 
 

Cheating is a serious threat to the validity of a testing program. Impara and Foster (2006) state 

that “cheating introduces what Messick (1989) characterized as construct-irrelevant variance” 
(pg. 91-92) as it becomes unclear if successful exam performance is due to mastery of the exam 

content or cheating. Cheating is often a problem in credentialing examines for several reasons. 

First and foremost, there are substantial stakes associated with an examinee's performance on the 

exam. A passing score on such a credentialing examination may result in the examinee becoming 

eligible to work in a field (e.g., licensure), or qualified for a new or higher paid position (e.g., 

certification). Second, many credentialing examinations are delivered on-demand and computer-

based and are therefore more vulnerable to security problems as compared to exams 

administered in other formats or less frequently (Cohen and Wollack, 2006). Third, given the 

motivation of examinees to cheat on these examinations, there is a market for exam content. 

Those seeking to profit from examinees’ desire to pass an exam will use extreme measures to 

gain access to the content. Such stolen content may then made available for purchase over the 

Internet (e.g., Smith, 2005).  

 

Given the serious implications of cheating for a testing program, it is important for testing 

programs to enact monitoring programs by which they can identify suspect behavior. Cizek 

(1999, pg. 145) points out that “even statisticians and others who appreciate the weightiness of 
probabilistic statements--perhaps especially those people--recognize the limitations of statistical 

methods.” However, he does go on to argue in favor of the expanded use statistical methods for 

detecting cheating. He suggests that statistical methods are preventative, that they show “concern 
about the problem of cheating and… commitment to address it” (p. 147). Typical approaches for 
such monitoring may include evaluating examinee-level performance to identify suspect 

examinees or item-level statistics to identify potentially compromised test content.  

 

Cizek (1999) summarizes a set of statistical approaches used to detect answer copying. The focus 

of these methods is to compare the response patterns of pairs of examinees. These approaches 

attempt to identify individuals that copy other individuals during a test administration. This is a 

different problem than identifying groups of examinees who have gained access to the 

examination content prior to taking the examination. The focus of this study is an attempt to 

develop an approach to identify examinees who have gained access to the exam content. 

 

Currently, some examination programs conduct various types of analyses to detect security 

problems at the test- or examinee-level. An example of such analyses would be evaluating total 

exam performance by total exam time. For example, Figure 1 shows a scatter plot of each 

examinee’s total exam time by their examination score from an international certification 

program that consists of 40 multiple choice items with a median item response time of 43 

seconds per item. The cluster of examinees in the upper left corner of the Figure scored at or near 

100% correct in a very short amount of time (e.g. under 9 minutes total). This is an all too typical 

result in certification testing when examinees have prior knowledge of the exam content, 

recognize exam questions quickly, and respond almost immediately.  
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Figure 1. Examinee Response Times by Exam Score  
 

As is evidenced in Figure 1, evaluating total exam time by exam performance can help identify a 

potential exposure problem at the test level. However, test sponsors cannot rely on such 

information to identify suspect examinees because it would be easy for a cheating examinee to 

modify their behavior and slow their response time.  

 

The purpose of this study is to investigate the feasibility of a method for detecting examinees 

who likely had prior knowledge of item content or answers through differential person 

functioning (DPF) analysis. This is a two step approach. In the first step, a testing program 

administers a set of items embedded within the operational examination (security items) to each 

examinee. These security items would be drawn from a bank of items aligned to the test content 

and would be believed to be uncompromised. In addition, these items would be continuously 

refreshed within a test form in a much shorter window (e.g. once a month, or after a given 

number of exposures) than is possible for the operational test content simply because there would 

be a small number of security items relative to the number of operational items.  

 

In the second step of this process, DPF analysis would be used to identify examinees who 

demonstrated suspect behavior based on the comparison of their performance on the scored items 

to their performance on the security items. For example, if an examinee passes the operational 

examination and also scores sufficiently high on the security items there would be additional 

evidence of the examinee’s knowledge and ability within this professional content area. 

Conversely, an examinee with a high score on the operational examination who performed 

poorly on the security items would be flagged for suspect behavior. By way of example, if the 

operational forms of an examination consist of 60 items, a program could reasonably include 10 

security items without substantially increasing the burden on the test takers. An examinee who 

scored 59 out of 60 on the operational part of the test and only 2 out of 10 on the security items 

might be considered suspect. In other words, a sufficiently high score on the operational items 
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associated with sufficiently low scores on the security items would prompt a concern for the 

validity of the operational score. 

 

There are several appealing aspects to this approach. First, it would be difficult for cheaters to 

modify their behavior to get around this approach to flagging. Second, examinees would be 

aware of the changing content and therefore might be deterred from trying to cheat knowing they 

would not obtain the full test content a priori. Third, and most importantly, it could help identify 

examinees that do not have the knowledge and ability to legitimately earn the credential. 

 

The purpose of this study was to (1) demonstrate the process and outcomes of including these 

constantly refreshed security items and (2) investigate the number of security items that would be 

necessary to detect egregious offenders with sufficient confidence to make decisions or take 

appropriate actions.   

 

Data  
Figure 1 showed an example of data from an international certification examination program 

with a serious security problem as indicated by the large number of examinees who scored very 

well on the exam in an extremely short amount of time. The administrators of this program 

recognized the security problem and attempted to address it using the solution described above. 

In this initial attempt, 642 examinees were randomly administered one of two pre-equated forms; 

each consisting of 40 dichotomously scored items. Additionally, examinees were randomly 

administered 25 presumably unexposed dichotomously scored security items from a bank of 61 

items developed for this examination. 

 

Methods  
DPF is statistical analysis approach, in this case using a Rasch measurement model, which holds 

the item and person parameters constant except for the person for whom DPF is being calculated. 

The examinee’s ability measure is estimated on each subset of items. A log-odds estimate of the 

difference between the two ability measures is calculated. Given the joint standard error between 

the measures, a probability is calculated for each examinee that indicates the likelihood of a 

particular combination of scores. For this analysis, the subsets of items are (1) the 40 operational 

scored items for each examinee and (2) the security items. 

 

The success of this method in identifying suspect examinees is based on the assumption that 

even if the scored content has been exposed, the smaller set of continuously refreshed items has 

not been exposed. Therefore, an examinee that is NOT minimally qualified in this professional 

field but has gained access to the operational test content will likely have a high estimated ability 

based on the operational scored items and a low estimated ability based on the security items. 

The results of DPF analysis would be a low estimated probability of these two measures 

resulting from the same examinee.  

 

The purpose of the first set of analyses was to demonstrate the outcome of using these “security 
items” to identify suspect examinees. Items were calibrated using Winsteps filtering out 

examinees with DPF contrasts greater than 1. The item parameters were anchored based on this 

analysis for all subsequent analyses. A DPF analysis using all 25 security items for each 

examinee was conducted. Examinees with a DPF contrast greater than 3 (more than a 3 logit 
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difference between the ability measure based on the 40 operational items and the ability measure 

based on the 25 security items) and with a probability less than .0001 were identified as suspect. 

Of 624 examinees, 124 were flagged as meeting these criteria. In addition, there were 22 

examinees that had DPF contrasts greater than 3 but probabilities exactly equal to .0001 who 

were not flagged.  

 
The purpose of the second set of analyses was to determine the number of security items needed 

to have confidence in the results of this approach to flagging and to see how the difficulty of the 

items might impact that confidence. We acknowledge that administering 25 security items in a 

60-item examination is not feasible for many programs. Therefore, we explored the stability of 

this system of flagging using smaller samples of items. Specifically, four different sample sizes 

of security items were randomly sampled: 5, 8, 10, and 15 items. Because missing easier items 

would result in more extreme person measures and therefore smaller probabilities, we also 

applied these same sample sizes again by selecting the easiest 5, 8 10, and 15 items administered 

to each examinee. Six different flagging probabilities (.05, .01, .005, .001, .0005, and .0001) 

were used for each sampling condition. The percent of consistent decisions as well as Type I and 

Type II error rates were calculated for each of these 48 conditions (6 flagging probabilities by 4 

sample sizes by 2 sampling methods). 

 

 
 

Results  
 

Demonstration of process 

 

In the first step of the analysis, the full data set including 40 operational items and 25 security 

items was used to identify suspect examinees. Figure 2 shows the contrasts in the DPF measures 

for each of the examinees, highlighting the most egregious examinees. Examinees in the lower 

right had high ability measures on the operational items and low ability measures on the security 

items. Examinees with a DPF probability less than .0001
1
 and a DPF contrast greater than 3 are 

identified as “Flagged”. These examinees may be considered suspect of having prior knowledge 

of the operational examination content. The results of this analysis served as the baseline 

comparison for all analyses in the next section. Specifically, the accuracy of each condition was 

assessed by comparing the results of the flagging to this initial analysis.  

                                                             
1 This value was selected as a baseline probability as it represents a likelihood of 1 in 10,000 and is the default for 

some commercially available software packages that run analyses used to detect cheating.  



7 

 

 
Figure 2. Examinee DPF Measures: Operational vs. Security Items  
 

 

 

Investigation of stability across sample sizes 

 

All 48 conditions of flagging criteria were run using the same sample of data and a flagging 

criterion of DPF contrast greater than 3. Table 1 shows the consistency and error rates based on 

randomly selecting each of the security item sampling sizes across DPF probabilities (also shown 

graphically in Figures 3 and 5). Table 2 shows the consistency and error rates based on selecting 

the easiest items administered to each examinee for each of the sample sizes and across DPF 

probabilities (also shown graphically in Figures 4 and 6). Consistency is the proportion of 

agreement of flagged examinees to those identified in the initial DPF analysis with 25 security 

items and a probability less than .0001. Type I error is the proportion of examinees flagged by 

the subset analyses that were not flagged by the initial analysis (i.e., over flagging). These 

examinees should not have been flagged but were marked as suspect in the subset analysis. Type 

II error is proportion of examinees flagged based on the initial analysis that were not flagged in 

the subset analysis (i.e., under flagging). These examinees should have been flagged as suspect 

but were not. 
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Table 1. Consistency and error rates based on random sampling 

 

 

Security 

Items 

Flagging probability 

0.05 0.01 0.005 0.001 0.0005 0.0001 

Consistency       

15 0.883 0.888 0.902 0.930 0.935 0.900 

10 0.877 0.903 0.916 0.917 0.903 0.841 

8 0.852 0.883 0.905 0.883 0.866 0.807 

5 0.885 0.810 0.807 0.807 0.807 0.807 

Type I errors 

15 0.103 0.098 0.084 0.051 0.026 0.003 

10 0.114 0.086 0.069 0.014 0.003 0.000 

8 0.123 0.089 0.058 0.016 0.003 0.000 

5 0.044 0.000 0.000 0.000 0.000 0.000 

Type II errors 

15 0.014 0.014 0.014 0.019 0.039 0.097 

10 0.009 0.011 0.016 0.069 0.093 0.159 

8 0.025 0.028 0.037 0.101 0.131 0.193 

5 0.072 0.190 0.193 0.193 0.193 0.193 

 
 

 

Table 2. Consistency and error rates based on sampling the easiest items 

 

 

Security 

Items 

Flagging probability 

0.05 0.01 0.005 0.001 0.0005 0.0001 

Consistency       

15 0.931 0.944 0.945 0.945 0.939 0.907 

10 0.925 0.936 0.933 0.900 0.885 0.824 

8 0.935 0.928 0.910 0.843 0.829 0.807 

5 0.903 0.813 0.807 0.807 0.807 0.807 

Type I errors 

15 0.062 0.050 0.045 0.033 0.026 0.003 

10 0.048 0.030 0.026 0.009 0.005 0.000 

8 0.036 0.022 0.011 0.002 0.000 0.000 

5 0.011 0.000 0.000 0.000 0.000 0.000 

Type II errors 

15 0.006 0.006 0.009 0.022 0.034 0.090 

10 0.026 0.034 0.040 0.090 0.111 0.176 

8 0.030 0.050 0.079 0.156 0.171 0.193 

5 0.086 0.187 0.193 0.193 0.193 0.193 
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Figure 3. Decision consistency, random selection 
 

 

 
Figure 4. Decision consistency, easiest selected 
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Figure 5. Error rates, random selection 
 

 

 
Figure 6. Error rates, easiest selected  

 

 

In terms of decision consistency, higher values were observed when more security items were 

used, particularly at lower probability values. Using larger probability values, higher decision 

consistency estimates resulted from using the easiest items seen by each examinee in contrast to 

randomly selecting the security items. In the random selection condition, it is possible that some 

examinees were not administered many easy items. 

 

With respect to Type I errors (over flagging), lower error rates were observed when smaller 
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sample of items and lower probability values does reduce Type I error but will also cause a 

decrease in power, or the ability to flag candidates who should be flagged.   

 

The maximum possible Type II error rate (under flagging) in this study is just under 20% 

because that is the proportion of examinees flagged by the initial DPF analysis. When looking at 

Type II error, lower error rates were observed when the items were selected randomly, a larger 

sample of security items was used, and a larger flagging probability was used.  

 

 

Conclusions  
 

There are some distinct advantages for using security items along with DPF analysis for flagging 

suspect examinees. First, though based on statistical probability, the approach is conceptually 

simple and logical. One can easily explain to test sponsors and policy makers that getting a very 

high score on one set of items and getting a very low score on another set of easy items designed 

to measure the same domain is unlikely. For example, one examinee from this analysis scored 40 

out of 40 on the operational test and answered 0 of 8 security items correctly. A practitioner 

could easily communicate this scenario to policy makers and explain that the probability of these 

two scores coming from the same examinee (assuming that the person did not have prior 

knowledge of the operational content) would be 1 in 5000 (i.e., .0002). Second, without prior 

knowledge of the continuously refreshed items, cheating examinees cannot alter their behavior in 

such a way as to not be detected. Third, DPF contrast and associated probability values are 

provided for each examinee which can be used to corroborate other evidence of cheating. 

Finally, this approach may be presented as a validation of examinees’ abilities instead of being 
accusatory, which may be appealing to practitioners as well as test sponsors.  

 

Based on the results of this study, there is no recommended right number of security items. The 

results are sample and test dependent for an exam that has very clearly been compromised and 

likely will not generalize. However, the results do allow us to better understand the trade offs of 

power and Type I and II errors. This is an important consideration for a test sponsor if examinee 

performance on a set of items is going to be used for decision making at the examinee level. For 

example, if a test program wants to avoid Type I errors (over flagging) and is willing to lose 

power (not being able to detect some of the most egregious offenders) then they might be able to 

use eight security items. For a particular testing program, simulation studies could be conducted 

that would estimate consistency and error rates for different numbers of items with different 

parameters.  

 

Based on the data in this study, using 8 security items, a DPF contrast greater than 3, and 

flagging probabilities less than .005 would result in 91% decision consistency, 1.1% Type I error 

rate, and a 7.9% Type II error rate. The flagged examinees scored 37 or higher out of the 40 

operational items and 3 or fewer out of the 8 security items. If the operational and security items 

were delivered in a fixed form, rather than selected randomly, and had known item parameters, it 

would not be necessary to run a post-administration DPF analyses to flag examinees. Rather, 

DPF contrast and probabilities could be used to determine raw scores that would indicate 

cheating that could then be used to make decisions about the examinee at the time of 

administration based on those raw scores. 
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This is the first step in testing this methodology as a means of identifying suspect examinees. 

With sufficient support and measurement precision, policy makers may choose to take specific 

action based on these results. Such action could be at the exam level (e.g. rebuild the exam forms 

with new unexposed content) or the examinee level (e.g. withhold certification).   

 

Real data rather than simulated data were used in part to show the reality of the challenge we are 

facing and in part because we would not know how to begin to simulate cheating as dimension, 

which it clearly is when exposure is this extreme. We recognize that the severity of this high of 

frequency of examinees having prior knowledge of content may be unique to testing within some 

professional fields and may not generalize to other testing programs. However, it is reasonable to 

think that similar problems may exist in other programs to a lesser extent or that as test takers 

around the world gain more access and skills with the Internet, this type of cheating may emerge.  

 

Many certification exams are available on demand worldwide and many retake policies allow 

examinees to take an exam immediately or almost immediately after an administration. Perhaps 

this convenience, along with increasing access to the Internet, has come at the cost of 

examination content being exposed. There are other approaches, such as windowed testing, that 

might have a much larger impact on deterring cheating and possibly even at a lesser cost. We 

encourage test sponsors to evaluate the benefits and the costs of such approaches. In the mean 

time, continuously refreshing a set of security items and using that information to flag 

examinees, may potentially thwart and deter some cheaters.   
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